Nanotechnology Division Department of **Electronics and Communication Engineering**

Periyar Nagar, Vallam Thanjavur - 613 403, Tamil Nadu, India Phone: +91 - 4362 - 264600 Email: headnano@pmu.edu

Fax: +91- 4362 - 264660 Web: www. pmu.edu

think • innovate • transform

Board of Studies in Nanotechnology Division / Department of ECE

Curriculum (I–VI Semesters) & Syllabus (I-VI Semesters)

(For the candidates admitted from 2018-19 onwards Based on Outcome Based Education)

For

M.Tech (Nanotechnology)

3 Year Part Time Degree Programme

APPROVED DATE			
BOS	28.05.2018		
ACM	09.06.2018		

VISION To be a University of global dynamism with excellence in knowledge and

MISSION	UM1	Offering well balanced programmes with scholarly faculty and state- of-art facilities to impart high level of knowledge.
	UM2	Providing student - centred education and foster their growth in critical thinking, creativity, entrepreneurship, problem solving and collaborative work.
	UM3	Involving progressive and meaningful research with concern for sustainable development.
	UM4	Enabling the students to acquire the skills for global competencies.
	UM5	Inculcating Universal values, Self respect, Gender equality, Dignity and Ethics.

CORE VALUES

- ♣ Student centric vocation
- ♣ Academic excellence
- **4** Social Justice, equity, equality, diversity, empowerment, sustainability
- ↓ Skills and use of technology for global competency.
- **4** Continual improvement
- ↓ Leadership qualities.
- Societal needs
- ↓ Learning, a life long process
- ∔ Team work
- **4** Entrepreneurship for men and women
- Rural development
- **4** Basic, Societal, and applied research on Energy, Environment, and Empowerment.

VISION	To be a pioneer division in offering Nanotechnology education and research with
	special emphasis on Energy, Environment and Health which would help to serve
	industry and society for developing cost effective and useful means

MISSION	DM1	To offer UG, PG and Research Programmes in Nano Technology
	DM2	To incorporate innovative teaching learning methods and teaching aids
	DM3	To nurture requirements of the emerging industrial needs to the students
	DM4	To cultivate the spirit of Entrepreneurship
	DM5	To explore solutions via Nano for the needs of society

Table: 1 Mapping of University Mission (UM) and Department Mission (DM)

	DM1	DM2	DM3	DM4	DM5	Total
UM1	3	2	2	2	2	11
UM2	2	2	2	2	2	10
UM3	2	2	2	2	2	10
UM4	2	1	1	1	1	6
UM5	1	0	1	0	0	2

1-Low 2- Medium 3 – High

PROGRAMME EDUCATIONAL OBJECTIVES

Based on the mission of the department, the programme educational objectives is formulated as

PEO1	Be employed in fields of engineering such as research, development, applications, testing, processing, analyzing and technical sales or service as an engineering technologist
PEO2	Start an entrepreneurial firm
PEO3	Achieve positions of increased responsibility (technical and/or supervisory) within an organization; and progress through advanced degree or certificate programs or participate in continuing education in engineering, business, and/or other professionally related fields.
PEO4	Progress through advanced degree or certificate programs or participate in continuing education in engineering, business, and/or other professionally related fields.

<u>Mapping of Department Mission (DM) with Program Educational Objectives</u> (PEOs)

	DM1	DM2	DM3	DM4	DM5
PEO1	3	2	1	1	2
PEO2	0	1	1	3	2
PEO3	1	-	2	-	-
PEO4	3	1	3	3	2
	7	4	7	7	6
	2	1	2	2	2

1 - Low Relation

2 - Medium Relation

3 – High Relation

GRADUATE ATTRIBUTES

- 1. <u>Engineering knowledge:</u> Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialisation for the solution of complex engineering problems.
- 2. **Problem analysis:** Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- 3. **Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for public health and safety, and cultural, societal, and environmental considerations.
- 4. <u>Conduct investigations of complex problems:</u> Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- 5. <u>Modern tool usage:</u> Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling to complex engineering activities, with an understanding of the limitations.
- 6. <u>The engineer and society:</u> Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- 7. <u>Environment and sustainability:</u> Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8. <u>Ethics:</u> Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9. **Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10. <u>Communication:</u> Communicate effectively on complex engineering activities with the engineering community and with the society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- 11. <u>Project management and finance:</u> Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- 12. <u>Life-long learning:</u> Recognise the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM OUTCOMES

PO 1	To strengthen the application of fundamental knowledge in Mathematics, Science, Engineering and Technology for the benefit of mankind.
PO 2	To enhance the technical competence of identifying, analyzing and creating appropriate engineering solutions.
PO 3	To provide demand based training to meet the graduates readily employable by the industries.
PO 4	To create opportunities for the students to take on research projects for solving the problems of the future.
PO 5	To cultivate the habit of lifelong learning for successful career and life.
PO 6	To inculcate qualities of team work and leadership for creating future leaders of the nation.
PO 7	To impart awareness of social responsibilities for becoming a responsible citizen.
	PROGRAM SPECIFIC OUTCOME
PSO 1	Knowledge and generation of intellectual capital (Paper, poster, presentation, patent etc) in the areas of Nano architecture, Nanomaterials, Nanosystems, and their encompassing applications
PSO 2	Ability to identify tailor made Nano applications for Local and Societal needs by (a) Improving efficiency of existing systems by developing innovative low cost solutions (b) New product development

Mapping of Program Outcomes (POs) with Graduate Attributes (GAs)

PO/GA	GA 1	GA2	GA3	GA4	GA5	GA6	GA7	GA8	GA9	GA 10	GA 11	GA 12
PO1	3	1	0	0	1	0	0	0	0	0	0	0
PO2	1	3	2	2	1	2	2	1	1	1	1	1
PO3	1	1	3	1	1	1	1	1	1	1	1	1
PO4	1	1	1	3	3	3	3	0	0	0	2	2
PO5	1	1	1	1	3	1	0	0	0	0	1	3
PO6	1	1	1	1	1	3	0	0	0	0	0	0
PO7	1	1	1	1	1	3	2	1	0	0	0	0
PSO1	2	2	2	2	2	2	2	1	1	2	2	2
PSO2	2	2	2	2	2	2	2	0	0	0	0	2

3-High Relation 0-Relation 1- Low Relation 2 – Medium Relation Table 3 Mapping of Program Outcomes (POs) with Program Educational Objectives

(PEOs)

PEO / PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2
PEO 1	3	3	2	3	2	2	1	2	2
PEO 2	2	3	2	3	3	2	2	2	2
PEO 3	0	0	1	0	0	1	2	2	2
PEO 4	2	2	3	1	2	1	1	2	2

0-No Relation

1- Low Relation **2** – Medium Relation

3-High Relation

S.No	Course Type	Symbol	Credits		
1.	Professional core courses	PCC	12		
2.	Professional Elective courses	PEC	15		
3.	Open Elective Course	OEC	3		
4.	Professional Core Courses –Lab	PCC-L	6		
5.	Mandatory Courses	MC	2		
6.	Audit	MC-Audit	0		
7.	Project	PR	30		
	Total				

STRUCTURE OF M.TECH. NANOTECHOLOGY PROGRAMME (PART TIME)

Sl.No	Course Code	Course Name	Semester	Credits
1.	QNT101	Fundamentals of Nanotechnology	Ι	3
2.	QNT102	Nano Fabrication and Synthesis Techniques	Ι	3
3.	QNT201	Nanomaterials Characterization Techniques	П	3
4.	QNT403	Computational Nanotechnology	IV	3

PROFESSIONAL CORE COURSES (PCC)

PROFESSIONAL ELECTIVE COURSES

Sl.No	Course	Course Name	Semester	Credits
	Code			
1.	QNT103A	Societal Implications of Nanotechnology	Ι	3
2.	QNT103B	Properties of Nanophase Materials		3
3.	QNT103C	Nanomedicine		3
4.	QNT103D	Nanotechnology in Energy Conversion and Storage		3
5.	QNT202A	Nanoscale Magnetic Materials and Devices	II	3
6.	QNT202B	Metallopolymer Nanocomposites		3
7.	QNT202C	Nanochemistry		3
8.	QNT202D	Nanotoxicology		3
9.	QNT301A	Green Manufacturing Technology	III	3
10.	QNT301B	Advanced Crystal Growth Techniques		3

11.	QNT301C	Carbon Nanotube Electronics and Devices		3
12.	QNT301D	Nanoscale Integrated Computing		3
13.	QNT401A	Micro/Nano Devices and Sensors	IV	3
14.	QNT401B	Spectroscopic Techniques for Nanomaterials		3
15.	QNT401C	Thin Film Science and Technology		3
16.	QNT401D	Micro and Nano Emulsions		3
17.	QNT501A	Nanotechnology Business Applications and Commercialization	V	3
18.	QNT501B	Nano – CMOS Circuit and Physical Design		3
19.	QNT501C	Nanomanipulation & Assembly		3

OPEN ELECTIVE COURSES

Sl.No	Course Code	Course Name	Semester	Credits
1.		Business Analytics	III	3
2.		Industrial Safety	III	3
3.		Operations Research	III	3
4.		Cost Management of Engineering Projects	III	3

Sl.No	Course Code	Course Name	Semester	Credits
1.	QNT104	Nano Fabrication and Synthesis Techniques Lab	Ι	2
2.	QNT204	Simulation of Nanostructure & Nanomaterial's Lab	II	2
3.	QNT304	Nanomaterials Characterization Techniques Lab	III	2
4.	QNT404	Computational Nanotechnology Lab	IV	2
5.	QNT502	Dissertation Phase - I	V	10
6.	QNT601	Dissertation Phase - II	VI	16

PROFESSIONAL CORE COURSES – LAB

MANDATORY COURSES

Sl.No	Course Code	Course Name	Semester	Credits
1.		Research Methodology and IPR	II	2
2.		Mini Project	IV	2

MANDATORY COURSES - AUDIT

Sl.No	Course	Course Name	Semester	Credits
	Code			
1.		English for Reasearch Paper	III	0
		Writing		
2.		Constitution of India	IV	0

REGULATION 2018

SEMESTER I

AICTE	Course	Course Title	Credits Hours								
Abbr	code		L	Т	Р	Total	L	Т	Р	S.S	Total
PCC	QNT101	Fundamentals of Nanotechnology	3	0	0	3	3	0	0	0	3
PCC	QNT102	Nano Fabrication and Synthesis Techniques	3	0	0	3	3	0	0	1	4
PEC	QNT103*	Professional Elective Course I	3	0	0	3	3	0	0	0	3
PCC-L	QNT104	Nano Fabrication and Synthesis Techniques Lab	0	0	2	2	0	0	4	0	4
		Total	9	0	2	11	9	0	4	1	14

Total Credits – 11

SEMESTER II

AICTE	Course	Course Title	Credits							Hours		
Abbr	Code		L	Т	P	Total	L	Т	Р	S.S	Total	
PCC	QNT201	Nanomaterials Characterization Techniques	3	0	0	3	3	0	0	1	4	
PEC	QNT202*	Professional Elective Course II	3	0	0	3	3	0	0	0	3	
MC	QNT203	Research Methodology and IPR	2	0	0	2	2	0	0	0	2	
PCC-L	QNT204	Simulation of Nanostructure & Nanomaterial's Lab	0	0	2	2	0	0	4	0	4	
		Total	8	0	2	10	11	0	2	2	13	

Total Credits – 10

SEMESTER III

AICTE	Course	Course Title	Credits Hours								
Abbr	Code		L	Т	P	Total	L	Т	Р	S.S	Total
PEC	QNT301*	Professional Elective Course III	3	0	0	3	3	0	0	0	3
MC- Audit	YEGOE1	English for Research Paper Writing	0	0	0	0	3	0	0	0	3
OEC		Open Elective	3	0	0	3	3	0	0	0	3
PCC-L	QNT304	Nanomaterials Characterization Techniques Lab	0	0	2	2	0	0	4	0	2
		Total	6	0	2	8	9	0	4	0	13

Total Credits – 8

SEMESTER IV

AICTE	Course	Course Title	Credits Hours								
Abbr	Code		L	Т	Р	Total	L	Т	Р	S.S	Total
PEC	QNT401*	Professional Elective Course IV	3	0	0	3	3	0	0	0	3
MC- Audit	YPSOE1	Constitution of India	0	0	0	0	3	0	0	0	3
PCC	QNT403	Computational Nanotechnology	3	0	0	3	3	0	0	0	3
PCC-L	QNT404	Computational Nanotechnology Lab	0	0	2	2	0	0	2	0	2
PR	QNT405	Mini Project	0	0	2	2	0	0	4	0	4
		Total	6	0	4	10	9	0	6	0	15

Total Credits - 10

SEMESTER V

AICTE	Course	Course Title		C	redi	ts	Hours					
Abbr	Code		L	Т	Р	Total	L	Т	Р	S.S	Total	
PEC	QNT501*	Professional Elective Course V	3	0	0	3	3	0	0	0	3	
PR	QNT502	Dissertation Phase - I	0	0	10	10	0	0	20	0	20	
		Total	3	0	10	13	3	0	20	0	23	

Total Credits - 13

SEMESTER VI

AICTE	Course	Course Title	Credits						Ho	ours	
Abbr	Code		L	Т	Р	Total	L	Т	Р	S.S	Total
PR	QNT601	Dissertation Phase - II	0	0	0	16	0	0	32	0	32
		Total	0	0	0	16	0	0	32	0	32

Total Credits – 16

Course	Course Title		С	redi	ts			Н	ours	
Code		L	Т	Р	Total	L	Т	Р	S.S	Total
	Professional Elective Co	urse	e I -(QNT	103*					
QNT103A	Societal Implications of Nanotechnology	3	0	0	3	3	0	0	0	3
QNT103B	Properties of Nanophase Materials	3	0	0	3	3	0	0	0	3
QNT103C	Nanomedicine	3	0	0	3	3	0	0	0	3
QNT103D	Nanotechnology in Energy Conversion and Storage		0	0	3	3	0	0	0	3
	Professional Elective Co	urse	II -	QNT	203*					
QNT202A	Nanoscale Magnetic Materials and Devices	3	0	0	3	3	0	0	0	3
QNT202B	Metallopolymer Nanocomposites	3	0	0	3	3	0	0	0	3
QNT202C	Nanochemistry	3	0	0	3	3	0	0	0	3
QNT202D	Nanotoxicology	3	0	0	3	3	0	0	0	3
	Professional Elective Cou	ırse	III -	QN	Г301*					

Board of Studies in Nanotechnology (With effect from 25.06.2018 onwards)

		r								
QNT301A	Green Manufacturing Technology	3	0	0	3	3	0	0	0	3
QNT301B	Advanced Crystal Growth Techniques	3	0	0	3	3	0	0	0	3
QNT301C	Carbon Nanotube Electronics and Devices	3	0	0	3	3	0	0	0	3
QNT301D	Nanoscale Integrated Computing	3	0	0	3	3	0	0	0	3
Professional Elective Course IV -QNT401*										
QNT401A	Micro/Nano Devices and Sensors	3	0	0	3	3	0	0	0	3
QNT401B	Spectroscopic Techniques for Nanomaterials	3	0	0	3	3	0	0	0	3
QNT401C	Thin Film Science and Technology	3	0	0	3	3	0	0	0	3
QNT401D	Micro and Nano Emulsions	3	0	0	3	3	0	0	0	3
	Professional Elective Co	urse	V -	QN7	501*					
QNT501A	Nanotechnology Business Applications and Commercialization	3	0	0	3	3	0	0	0	3
QNT501B	Nano – CMOS Circuit and Physical Design	3	0	0	3	3	0	0	0	3
QNT501C	Nanomanipulation & Assembly	3	0	0	3	3	0	0	0	3

LIST OF OPEN ELECTIVE COURSE

Course	Course Title		C	redi	ts	Hours				
Code		L	Т	Р	Total	L	Т	Р	S.S	Total
	Business Analytics	3	0	0	3	3	0	0	0	3
	Industrial Safety	3	0	0	3	3	0	0	0	3
	Operations Research	3	0	0	3	3	0	0	0	3
	Cost Management of Engineering Projects	3	0	0	3	3	0	0	0	3

Overall Credits – 68

SYLLABUS

	ODE	QNT101	L	Т	P	С
COURSE NA	AME	FUNDAMENTALS OF	3	0	0	3
PPEPEOLI		NANOTECHNOLOGY		T		
PREREQUIS	SITES	Physics, Chemistry	L 3	T 0	P 0	H 3
UNIT I	Emergenc	e of Nanotechnology	5	U	0	9
Historical De	velopment:	ancient works on Nanomaterials; eme	rgence	of na	notech	nology with
special refere	nce to Feyn	man. Size & Scales: definition of nano	structu	res; ins	sight i	nto the nano
world; interv	vention into	the nano world; building blocks	of na	notech	nolog	y. Scientific
revolutions;	types of n	anotechnology & nano machines; l	basic p	roblen	ns &	limitations;
opportunities	at the nanos	cale; time and length scale in structures	; energ	y lands	scapes	
UNIT II	Nanoscale	Phenomena				9
Density of sta	ates; tunnelli	ing; chemical bonds (types & strength)	. Intern	nolecu	lar &	inter-particle
forces. Molec	cular & crys	stalline structures; particles & grain be	oundarie	es. Co	valent	& coulomb
interactions; i	interactions	involving polar molecules & polarizat	ion; we	ak int	ermol	ecular forces
& total interm	nolecular pai	r potentials. Forces between solvation,	hydrati	on; po	lymer	s at surfaces;
adhesion. The	ermodynami	cs of self-assembly. Hierarchical stru-	ctures &	& Fun	ctiona	lity. Bulk to
surface trans	ition. Spatia	al & temporal scales; concept of co	nfineme	ent; ro	ole of	surfaces in
nanotechnolo	gy devices;	surface reconstruction; dangling bond	s & sur	face s	tates;	interfaces &
Casmir force.						
UNIT III	Functiona	l Nanomaterials				9
Fullerenes, ca	arbon nanoti	ube, graphene. Monomers & polymers	. Amor	phous	, cryst	alline, semi-
crystalline; c	rystals, poly	verystals. Composite materials; ceram	ics, all	loys, s	silicate	es. Quantum
hetero-structu	res: quantur	n well, quantum wire, quantum dot, na	nofossi	ils, sm	art du	st, porous &
nonporous inc	organic mate	erials, hydro gel & aerosols.				
Bio nanomate	erials: bio m	imetic systems, bio ceramics, dendrim	ers, mi	celles,	lipos	ome's, block
	Nanomateria	als for molecular electronics & optoe	lectroni	cs: th	in-filn	n transistors,
copolymers.	n transistors	, light-emitting devices, photovoltaic m	aterials	, nano	magne	etic materials
copolymers.		, light-emitting devices, photovoltaic m	aterials	, nano	magne	etic materials
copolymers.	conductors.	, light-emitting devices, photovoltaic m	aterials	, nano	magne	etic materials

SEMESTER I

nanoparticles,	nanowi	res, nanorods, nanocluste	ers, powders of nano crystal	line mate	rials, solid
disordered nan	ostructu	res. Imperfection in solid	ls: dislocations in single cryst	als (linea	r defects &
screw dislocation	on) and	imperfection-dependent	properties of crystals.		
UNIT V	Applic	ations of Nanomaterials			9
Applications o	f nano	materials in electronics	& communication, healthcar	re, sensor	rs, clothes,
paints and othe	r indust	rial as well as consumer p	products. Energy and Environ	mental ap	oplications.
(This unit is air	ned to j	provide an overview of va	rious possible applications of	f nanomat	erials).
LECTURE		TUTORIAL	PRACTICAL	TC	DTAL
45		0	0		45
TEXT					
1. "Nanotechr	nology:	Basic Science & Emergin	ng Technologies," Mick Wilse	on, Kama	li
Kannangar	ra & Ge	off Smith, Overseas Pres	s India Private Limited, 2005		
2. "Amorpho	us and	Nanocrystalline Materials	s: Preparation, Properties and	Applicati	ions," A.
Inoue & K	. Hashi	moto (Eds.), Springer, 20	01.3. "		
E REFERENC	CES				
http://nupex.eu	/index.p	ohp?g=textcontent/materia	aluniverse/sizeofthings⟨	=en	
http://www.slic	leshare.	net/niraliakabari3/ppt-of-	phynanophysics		
http://www.nar	oscienc	ceworks.org/publications/	books/4/9781420048056/inst	ructors/I7	ΓN
S-Lecture-					
http://ipn2.epfl	.ch/lns/	lectures/nanoscience/lect	urenotes/cour-1.pdf		
www.uniroma	2.it/dida	attica/NANOSCIENZE/de	eposito/L1.ppt		
mp.misis.ru/do	ocs/cour	ses/17/Mats_Moscow_2.	ppt		
http://uw.physi	ics.wisc	e.edu/~himpsel/Nano/lectu	ures.htm		
E REFERENC	CES				
www.nptel.ac.i	<u>n</u>				
www.mit.co.in					

COURSE CODE	QNT102	L	Т	Р	С			
COURSE NAME	NANO FABRICATION AND SYNTHESIS	3	0	0	3			
	TECHNIQUES							
PREREQUISITES	Physics, Chemistry and Fundamentals of	L	Т	Р	Η			
	Nanotechnology							
		3	0	0	3			
UNIT I Basic Concepts of Nano Fabrication								
Drexler-Smalley debate; realistic projections; outline of various preparation techniques; basic								
concepts of nano-s	structured materials; nucleation: surface nucleat	ion, g	rowt	h, gra	in size			
distribution; nano-p	article transport in low density media; unnel nano	o phas	e the	rmody	namics;			
coagulation of nanc	particles; determination of grain size; aggregate	form	ation	mass	fractal			
morphologies. Requi	irements for an ideal semiconductor nano structure;	clean	room	techn	ology			
UNIT II Physica	l Techniques				9			
Physical processes in	n semiconductor nano structures. Introduction; thin	film d	eposi	tion n	nethods;			
fundamentals of fi	lm deposition; thermal evaporation; spray pyre	olysis;	flar	ne py	rolysis;			
molecular beam epi	taxy; pulsed laser deposition; sputter deposition; c	liffere	nt tyj	pes sp	uttering			
processes; thermal for	orming processes; plasma processes; physical metho	ods for	the	prepar	ation of			
nano tubes; types o	f nano tubes; new forms of carbon nano tubes; p	oropert	ies o	f nano	o tubes;			
plasma arcing; laser	methods; pyrolytic synthesis; zeolites & template p	owder	s; lay	ered s	ilicates;			
soft chemical & co	ombustion methods. Laser fusion target fabrication	on tec	hniqu	ies; in	organic			
capsule fabrication;	and cluster formation by laser ablation							
UNIT III Chem	ical Methods				9			
Chemical unnel de	eposition (CVD); plasma-enhanced CVD; low press	sure pl	asma	CVD	; metal-			
organic CVD (MOC	CVD); photo-enhanced CVD; electron enhanced CV	/D; La	aser i	nduce	d CVD;			
atmospheric pressure	e CVD; reactive ion etching (RIE) molecular-beam	epitax	y (M	BE); c	hemical			
beam epitaxy (CBE); chemical bath deposition; electrochemical synth	hesis o	of na	no str	uctures.			
Sol-gel processing;	fundamentals of sol-gel process; sol-gel synthesis r	nethod	ls for	oxide	s; other			
inorganics and nane	o composites; the Pecheni method; silica gel; zi	rconia	and	Yttriu	um gel;			
	polymer nano composites. Mechanochemistry: grin	ding a	nd m	illing	devices			
	ssembly				9			
	. Self-assembly; self-assembled mono layers; dire			•				
layer assembly; spo	ntaneous formation & ordering of nano structure	s; nan	o-flu	idics 1	to build			

silicon devices with features comparable in size to DNA, proteins & other biological molecules; control and manipulation of microfluidic and nanofluidic processes for lab-on-a-chip devices. Langmuir Blodgett films; electrochemical self-assembly of oxide/dye composites. Self-assembled nanobiomaterials; pattern definition; pallsin transfer; atomic & molecular manipulation; biomineralization; colloidal quantum dots; self-assembly techniques

UNIT V Lithographic Techniques

9

Top-down approach to nanolithography; immersion lithography, EUV photolithography; phase shifting masks; x-ray lithography, including plasma x-ray sources; e-beam and focused ion-beam lithography; photo resist technologies for the nano scale; metrology and defect inspection. Soft lithography; nano imprint lithography; wet etching, dry etching (isotropic, anisotropic), pattern growth techniques (polymerization, directed assembly). Proximal probe nano lithography; STM; AFM; resists & imaging layers for proximal probes

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXT

- 1. "Introduction to Nanotechnology," Frank J. Owens & Charles P. Poole, Wiley-IEEE, 2003.
- "Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004.
- 3. "The Powder Method," L.V. Azaroff & M. J. Buerger, McGraw-Hill, 1958

REFERENCES

- 1."Introduction to Nanotechnology," Frank J. Owens & Charles P. Poole, Wiley-IEEE, 2003.
- "Encyclopedia of Nanoscience & Nanotechnology," H. S. Nalwa, American Scientific Publishers, 2004.
- 2. "X-ray Diffraction Procedures," H. P. Klung & L. E. Alexander, John Wiley& Sons.
- 3. "The Powder Method," L.V. Azaroff & M. J. Buerger, McGraw-Hill, 1958

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. www.mit.co.in

COURSE CODE	QNT104	L	Т	Р	C
COURSE NAME	NANO FABRICATION AND	0	0	1	1
	SYNTHESIS TECHNIQUES LAB				
PREREQUISITES	Chemistry, Nanofabrication Techniques and	L	Т	Р	Η
	Fundamentals of nanotechnology				
		0	0	2	2

List of Experiments

Any Twelve Experiments :

- 1. Synthesis of zno nanoparticles by Wet Chemical Precipitation
- 2. Synthesis of zero valent iron nanoparticles(fe³⁺) by Wet Chemical Precipitation
- 3. Synthesis of Polymerosomes by Water Oil emulsification Technique
- 4. Synthesis of cadmium sulphide nanoparticles by Sol-Gel Method
- 5. Synthesis of pva/peg film by Spin Coating
- 6. ZnO thin film fabrication by Dip Coating Method
- 7. Synthesis of silver nanoparticles
- 8. Synthesis of zns nanoparticles
- 9. Fabrication of copper nanoparticles by Electrodeposition Techniques
- 10. Synthesis of cu/pva nanofibers by Electrospinning
- 11. Nanoarray Fabrication by Oxide Dot Fabrication
- 12. Synthesis of silver nanofibers
- 13. Herbal nanopowder fabrication by Ball Milling
- 14. Circuit fabrication by Manual Lithography Techniques
- 15. Thin film Fabrication by Spray Pyrolysis
- 16. Thin film fabrication By Physical Vapour Deposition
- 17. Nanopowder fabrication by Chemical Vapour Deposition

SEMESTER II

COURSE	CODE	QNT20)1			L	Τ	P	С
COURSE	NAME	NANO	MATERIALS (CHARACTER	ZATION	3	0	0	3
		TECH	NIQUES						
PREREQU	U ISITES	Materia	l Science,Chemi	istry and Physic	8	L	Τ	Р	Η
						3	0	0	3
UNIT I	Introductio	on to spe	ctroscopy						9
Basic princi	ples and applic	cations of	UV-Vis-NIR, FT	IR, FT-Raman, F	hotoluminescer	nce,	NMI	R, ES	R and
Light Scatte	ring methods.								
UNIT II	X – ray tec	hniques							9
X-ray powe	der diffraction	n –Quant	itative determina	tion of phases;	Structure anal	ysis,	, sin	gle o	crystal
	-		on of accurate lat	-		_			
particle siz	e analysis u	ising Scl	nerer formula-	Particle Size A	nalyzer- Ellip	som	etry-	thic	ckness
measuremen									
UNIT	Electron S	pectrosco	ору						9
III									
•		•	py, Auger Elec	•					
	1		analysis – EPMA			chara	acteri	zatio	
UNIT									9
IV									<u> </u>
			tic and plastic c						
			or interpretation		-				
		•	methods-Hardn	-				-	
			Vibration Sam		-	ice	Spe	ctros	copy-
			tic and electrical		anomaterials.				
UNIT V			nods of Analysis						9
• 1			lls; electrode				-		
	•		tic Current-Vol	•	-				-
	,	alysis b	y AFM and S	STM (STS); e	lectron beam	in	duce	d ci	urrent
measureme	ent (EBIC)								
mousurente			LECTURE	TUTORIAL	PRACTICA	\mathbf{L}	1	TOT.	AL
measureme									
measureme			45	0	0			45	
								45	
TEXT			45	0	0			45	
TEXT 1. Skoog			45 inciples of Instru	0 umental Analysi	0 s"			45	
TEXT 1. Skoog 2. Raine	r Waser " Na	noscale (45 inciples of Instru Calibratin Standa	0 umental Analysi ards"Wiley-VCI	0 s"			45	
TEXT 1. Skoog 2. Raine 3. Raine	r Waser " Na r Waser " Na	noscale (45 inciples of Instru	0 umental Analysi ards"Wiley-VCI	0 s"			45	
TEXT 1. Skoog 2. Raine 3. Raine REFEREN	r Waser " Na r Waser " Na NCES	noscale (nometrol	45 inciples of Instru Calibratin Standa logy"Wiley-VCI	0 umental Analysi ards"Wiley-VCI H	0 s" H			45	
TEXT 1. Skoog 2. Raine 3. Raine REFEREN	r Waser " Na r Waser " Na NCES	noscale (nometrol	45 inciples of Instru Calibratin Standa	0 umental Analysi ards"Wiley-VCI H	0 s" H	5,		45	

2.	"Electron Microscopy and Analysis," P. J. Goodhews & F. J. Humphreys,
	Taylor and Francis.
3.	"Modern Techniques of Surface Science," D. P. Woodruff & T. A. Delchar,
	Cambridge Solid State Science.
4.	"Electronic Structure of Materials," A. P. Sutton, Oxford University Press, 1993.
5.	"Semiconductor Materials & Device Characterization," D. K. Schroder,
	John Willy & Sons
ER	EFERENCES
1. 1	www.nptel.ac.in
2.	<u>www.mit.co.in</u>

COURSE CODE	QNT 204	L	Τ	Р	С
COURSE NAME	SIMULATION OF NANOSTRUCTURE & NANOMATERIALS LAB	0	0	1	1
PREREQUISITES	Applied Physics, Applied Chemistry, Introduction to nanotechnology and Materials Science	L	Т	Р	H
		0	0	2	2
List of Experiments 1. Calculate the ba	and structure of a crystal				_

- 2. Transport calculations with ATK
- 3. Phonon Band structure, Electrical and Heat Transport of a Graphene Nanoribbon
- 4. Electron-phonon coupling properties of a Graphene Nanoribbon
- 5. Optical Properties of Silicon
- 6. Study of NiSi2-Si interface
- 7. Study of Bi₂Se₃ topological insulator
- 8. Study of Effective band structure of random alloy InGaAs
- 9. Study of Li-air battery interface
- 10. Study of Li-ion diffusion in LiFePO₄ for battery applications

SEMESTER III

COURSE	CODE	QNT304				L	Т	Р	С
COURSE	NAME	NANOMAT	ERIALS CHA	RACTERIZA	ΓΙΟΝ	3	0	0	3
		TECHNIQU	ES						
PREREQU	JISITES					L	Τ	Р	Η
						3	0	0	3
UNIT I	Introdu	ction to spectr	oscopy						9
Basic princ	iples and	applications of	UV-Vis-NIR,	FTIR, FT-Rama	an, Photolumi	nes	cen	ce, N	NMR,
ESR and Li	ight Scatte	ering methods.							
UNIT II	X – ray	techniques							9
X-ray pow	der diffra	action –Quanti	itative determine	nation of phase	es; Structure	ana	alys	is, s	single
crystal diffi	raction tec	chniques - Dete	ermination of a	ccurate lattice p	arameters - st	ruc	ture	ana	lysis-
-	•		• •	Scherer form	ula- Particle	Siz	ze .	Anal	yzer-
Ellipsometr	y- thickne	ess measureme	nts						
UNIT	Electron	n Spectroscopy	7						9
III									
-			-	on Spectroscop					
		DAX and W	DA analysis	– EPMA - A	pplications t	0 1	nanc	mat	erials
characteriza	1								1
UNIT IV		, 8		properties mea					9
	-	-	-	formation -mecl					
			-	an indentation	_				
	-	-	-	g of thin films an	-				
		-	-	eter, Impedan	-	ору	/-	PPM	lS, -
	-	-		of nanomaterial	S.				
UNIT V		netric Method	•	. 1					9
• •			-	entials. Hall r		-			
	•			ge (I-V) charac	-				-
			AFM and ST	'M (STS); ele	ctron beam	ind	uceo	1 cu	irrent
measureme	nt (EBIC)		LECTUDE	TUTODIAI		A T	,	TOT	ГАТ
			LECTURE 45	TUTORIAL	PRACTICA	AL			TAL
			45	0	0			4	3
TEXT									
				nental Analysis"	,				
			ibratin Standard	ls"Wiley-VCH					
	r Waser "	Nanometrolog	y"Wiley-VCH						
		8.							
REFEREN	ICES								
REFEREN 1. "Ha	ICES ndbook of	f Nanostructure		d Nanotechnolog	gy," vols. 1-5	,			

2.	"Electron Microscopy and Analysis," P. J. Goodhews & F. J. Humphreys,
	Taylor and Francis.
3.	"Modern Techniques of Surface Science," D. P. Woodruff & T. A. Delchar,
	Cambridge Solid State Science.
4.	"Electronic Structure of Materials," A. P. Sutton, Oxford University Press, 1993.
5.	"Semiconductor Materials & Device Characterization," D. K. Schroder,
	John Willy & Sons
ER	EFERENCES
3. 1	www.nptel.ac.in
4.	<u>www.mit.co.in</u>

COURSE CODE	QNT 304	L	Т	Р	С
COURSE NAME	NANOMATERIALS CHARACTERIZATION TECHNIQUES LAB	0	0	1	1
PREREQUISITES	Applied Physics, Applied Chemistry, Introduction to nanotechnology and Materials Science	L	Т	Р	Η
		0	0	2	2

List of Experiments

- 1. UV/VIS Spectroscopy and Spectrophotometry: Spectrophotometric Analysis of Potassium Permanganate Solutions.
- 2. Determination of Food Quality by UV Spectroscopic Methods.
- 3. Experimental studies on Thermal and Electrical properties of NiO2 thin film using SEM
- 4. Experimental setup for the measurement of the electrical resistivity and thermopower of thin films and bulk materials
- 5. Measuring Magnetization by Induction method
- 6. To determine the composition of a piece of tire tread using thermogravimetric analysis (TGA).
- 7. Analysis of the Thermal Properties of Ammonium Nitrate and Polystyrene by Differential Scanning Calorimetry (DSC)
- 8. Nanomechanical Measurements On Different Materials using Contact Mode AFM

SEMESTER IV

COURSE CODE	YNT4		SIEKIV		L	Т	Р	С
COURSE NAME		,5 PUTATIONAL	NANOTECHI		<u>L</u> 3	0	0	3
PREREQUISITES	COM	UTATIONAL	NANOTECH		<u>J</u>	U T	P	H
TREREQUISITES					<u>L</u> 3	0	0	3
UNIT I Physical I	Modelin	a			5	U	U	9
Basics of simulation a		8	f cimulation in	model evelue	tion	and	atud	-
		-						
principles used in mod								
system - linear and n			hastic activities	s - static and	uyna	annic	mod	218 -
Advantages and Disady	_							0
		ed Simulation				<u> </u>	1.4	9
Technique of simulation			-					
numerical computation	i technic	ques - Monte	ario metnod -	analog and n	ybri	a sir	nulati	on -
feedback systems.								
UNIT III Probabili	-	-						9
Stochastic variables -								
generation of random			iction technique	es - determination	on c	of the	leng	th of
simulation runs - Outpu								
UNIT IV Molecular		-						9
Introduction to molecul		-		-			-	-
- Computing transport			•					
 Design of compound 			-	simulations –	Opt	ical,	elect	rical
and structural property	by first j	principle calcula	tions.					-
		tructure Mode	0					9
Studies on microstruct	-	-						-
phase transition under			-	-		- Sen	niemp	rical
methods - Density func	tional th	eory mehods (E	PFT) - Visualiza					
		LECTURE	TUTORIAL	PRACTICAL		TO	DTAI	_
		45	0	0			45	
TEXT								
1. Erwin Kreyzig, "Ac	dvanced	Engineering Ma	thematics", Joh	in Wiley & Son	s, 20)04		
REFERENCES								
1. Ramachandran K.	I., G. I	Deepa, K.Namł	oori "Computa	ational chemist	ry	and	mole	cular
modeling –	:	Samingan 2009)					
Principles and appl 2. BeenaRai, "Molec				vel performan	ce	chem	vicals	and
materials",	ului 1110	doning 101 the	design of INC	ver performan		enem	10015	anu
Taylor & Francis g	roup, 20	12.						
3. Chistopher.J. Cram	1		utational Chem	istry- Theories	and	mod	els".	John
wiley& sons 2004.		-						
E REFERENCES								
1. <u>www.nptel.ac.in</u>								

2. <u>www.mit.co.in</u>					
COURSE CODE	QNT 404	L	Т	Р	C
COURSE NAME	COMPUTATIONAL NANOTECHNOLOGY	0	0	2	2
	LAB				
PREREQUISITES	Applied Physics, Applied Chemistry, Introduction to	L	Т	Р	H
	nanotechnology and Materials Science				
		0	0	4	4
List of Experiments				•	1
1. Simulation a	nd modeling of simple molecular structures.				
2. Prediction of	crystals structure and properties using nanomaterials mo	delir	ng me	ethods	5.

- 3. Simulation and modeling of various nanostructures.
- 4. Simulation and modeling of metals nanoparticles and their studies.
- 5. Development of simulation protocols for the study of nanofilms and nanosurfaces.
- 6. Simulation and modeling study of nanomaterials and their optical property studies.
- 7. Simulation and modeling of nanomaterials and their electronic property studies.
- 8. Modeling of nanomaterials and their interaction studies with other molecules.

GOTTE ~= -	CODE	QNT103A		L	Т	Р	С
COURSE N	NAME	SOCIETAL IMPLICAT	IONS OF	3	0	0	3
		NANOTECHNOLOGY					
PREREQU	ISITES			L	Т	Р	Η
				3	0	0	3
UNIT I	Economi	c Impact of Nanotechnolog	S y				9
Socio-Econ	omic Impa	act of Nanoscale Science	- Managing the Nanot	echno	ology	Revolu	ition:
Consider the	e Malcolm	Baldrige National Quality	Criteria - The Emergin	ig Nai	no Eco	onomy	Key
Drivers, Ch	allenges, a	nd Opportunities -Transcer	nding Moore's Law with	n Mol	ecular	Electr	onics
and Nano	otechnolog	y -Semiconductor Scali	ing as a Model	for	Nano	otechno	ology
Commercia	lization -	Sustaining the Impact of N	anotechnology on Prod	uctivi	ty, Su	stainab	oility,
and Equity							
UNIT II	Social Sc	enarios					9
Navigating	Nanotech	nology Through Society -	Nanotechnology, Sur	veilla	nce, a	nd So	ciety:
Methodolog	gical Issue	s and Innovations for So	ocial Research - Nar	notech	nolog	y: So	cietal
Implications	s: Individ	ual Perspectives -Nanotec	chnology and Social Tre	ends	- Fiv	e Nan	otech
Social Sce	narios-Tec	hnological Revolutions and	nd the Limits of E	Ethics	in a	an Ag	e of
Commercia	lization - V	vision, Innovation, and Polic	сy				
UNIT III	Converg	ing Technology and Gover	rnance				9
Nanotoohno	1						
TNAHOLECHINO	nogy s im	plications for the Quality	of Life - Managem	nent o	of Inn	ovatio	n for
		plications for the Quality gies -The "Integration/Pene					
Convergent	Technolo	gies -The "Integration/Pene	tration Model:" - The	e Use	of A	nalogie	es for
Convergent Interdiscipli	Technolo inary Rese	gies -The "Integration/Pene arch in the Convergence of	tration Model:" - The Nano-, Bio-, and Info	e Use ormati	of Ai on Te	nalogie chnolo	es for ogy -
Convergent Interdiscipli Converging	Technolo inary Rese Technolo	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go	e Use ormati verna	of An on Te nce- l	nalogie chnolo Problei	es for ogy - ms of
Convergent Interdiscipli Converging Governance	Technolo inary Rese Technolo of Nano	gies -The "Integration/Pene arch in the Convergence of	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go	e Use ormati verna	of An on Te nce- l	nalogie chnolo Problei	es for ogy - ms of
Convergent Interdiscipli Converging Governance	Technolo inary Rese Technolo of Nano plogy for N	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go	e Use ormati verna	of An on Te nce- l	nalogie chnolo Problei	es for ogy - ms of
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV	Technolo inary Rese Technolo of Nano ology for N Ethics an	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law	tration Model:" - The Nano-, Bio-, and Info Risks, and Society.Go Impacts of Governmen	e Use ormati verna at Sci	of An on Te nce- l ence l	nalogie echnolo Problei Initiati	es for ogy - ms of ves - 9
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and	Technolo inary Rese Technolo of Nano ology for N Ethics an Law -	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno	e Use ormati verna it Sci logy:	of An on Te nce- l ence l Refle	nalogie echnolo Problei Initiati ections	es for ogy - ms of ves - 9 and
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions	Technolo inary Rese Technolo of Nano ology for N Ethics an Law -	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier	e Use ormati verna it Sci logy:	of An on Te nce- l ence l Refle	nalogie echnolo Probler Initiativ ections	es for ogy - ns of ves - 9 and on of
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey -	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier	e Use ormati verna it Sci logy:	of An on Te nce- l ence l Refle	nalogie echnolo Probler Initiativ ections	es for ogy - ns of ves - 9 and on of
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt	Technolo inary Rese Technolo of Nano logy for N Ethics an Law - ters Assoc	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - iated with Nanotechnology	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic	e Use ormati verna it Sci logy:	of An on Te nce- l ence l Refle	nalogie echnolo Probler Initiativ ections	es for ogy - ns of ves - 9 and on of
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc Life in the D Public P	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - tiated with Nanotechnology Nanotechnology Initiative. erception and Participatio	tration Model:" - The Nano-, Bio-, and Info Risks, and Society Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic n	e Use ormati verna at Sci logy: · - 2 cs - 1	of An on Te nce- l ence l Refle An Ex Negoti	nalogie echnolo Problen Initiativ ections plorations	es for pgy - ns of ves - 9 and on of over 9
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc tife in the Public P raction Re	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - iated with Nanotechnology Nanotechnology Initiative.	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen dence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Nanotechnological Ris	e Use ormati verna at Sci logy: 2 cs - 1 sks	of An on Te nce- I ence I Refle An Ex Negoti	nalogie echnolo Problei Initiati ections plorations ations	es for ogy - ms of ves - 9 and on of over 9 sal to
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - 1 s - Ethics ters Assoc Life in the 1 Public P raction Re nderstandi	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - iated with Nanotechnology Nanotechnology Initiative. erception and Participatio search - Communicating	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Social Impacts - Na	e Use ormati verna at Sci logy: A cs - I sks anotec	of An on Te nce- l ence l Refle An Exj Negoti - A	nalogie echnolo Probler Initiati ections plorations ations Propos gy in	es for pgy - ms of ves - 9 and on of over 9 sal to the
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter Advance U Media: A	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc Life in the Public P raction Re nderstandi Prelimin	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - tiated with Nanotechnology Nanotechnology Initiative. erception and Participatio search - Communicating ng of Nanotechnology's	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen dence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Nanotechnological Ris Social Impacts - Na Engagement with N	e Use ormati verna at Sci logy: - 2 cs - 1 sks anotec Janos	of An on Te nce- I ence I Refle An Ex Negoti - A chnolo cale S	nalogie echnolo Probler Initiati ections plorations plorations gy in science	s for ogy - ns of ves - 9 and on of over 9 cal to the and
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter Advance U Media: A Engineering	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc life in the Public P raction Re nderstandi Prelimin g - Nan	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - tiated with Nanotechnology Nanotechnology Initiative. erception and Participatio search - Communicating ng of Nanotechnology's nary Analysis - Public	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Social Impacts - Na e Engagement with N yond Risk - Comm	e Use ormati verna at Sci logy: A cs - l sks anotec Janose unicat	of An on Te nce- l ence l Refle An Exp Negoti - A chnolo cale S ion S	nalogie echnolo Probler Initiati ections plorations ations gy in science treams	s for pgy - ms of ves - 9 and on of over 9 sal to the and and
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter Advance U Media: A Engineering Nanotechno	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc Life in the Public P raction Re nderstandi Prelimin g - Nan ology: The	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - iated with Nanotechnology Nanotechnology Initiative. erception and Participatio search - Communicating ng of Nanotechnology's nary Analysis - Public notechnology: Moving Bey	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Social Impacts - Na e Engagement with N yond Risk - Comm	e Use ormati verna at Sci logy: A cs - l sks anotec Janose unicat	of An on Te nce- l ence l Refle An Exp Negoti - A chnolo cale S ion S	nalogie echnolo Probler Initiati ections plorations ations gy in science treams	s for pgy - ms of ves - 9 and on of over 9 sal to the and and
Convergent Interdiscipli Converging Governance Nanotechno UNIT IV Ethics and Suggestions Patent Matt Quality of L UNIT V Public Inter Advance U Media: A Engineering Nanotechno	Technolo inary Rese Technolo of Nano ology for N Ethics an Law - ters Assoc ters Assoc tife in the P raction Re nderstandi Preliming - Nan ology: The s - Indivi	gies -The "Integration/Pene arch in the Convergence of ogies: Innovation, Legal F technology -Institutional fational Security nd Law Ethical Issues in Nanosci s and Nano: A Survey - tiated with Nanotechnology Nanotechnology Initiative. erception and Participatio search - Communicating ng of Nanotechnology's nary Analysis - Public notechnology: Moving Bey e (Re)Interpretationof a N	tration Model:" - The Nano-, Bio-, and Info Risks, and Society .Go Impacts of Governmen ence and Nanotechno Law in a New Frontier -The Ethics of Ethic n Social Impacts - Na e Engagement with N yond Risk - Comm	e Use ormati verna at Sci logy: A cs - l sks anotec Janose unicat	of An on Te nce- l ence l Refle An Exp Negoti - A chnolo cale S ion S	nalogie echnolo Probler Initiati ections plorations ations gy in science treams	s for pgy - ms of ves - 9 and on of over 9 all to the and cietal

TEXT

1.	Mihail C. Roco and William Sims Bainbridge Nanotechnology: Societal
	Implications II-Individual Perspectives ^{II} , Springer (2007)
REFE	RENCES
1.	Geoffrey Hunt and Michael D. Mehta -Nanotechnology: Risk, Ethics and Lawl,
	Earthscan/James & James publication (2006).
2.	Jurgen Schulte — Nanotechnology: Global Strategies, Industry Trends and Applications,
	John Wiley & Sons Ltd (2005).
3.	Mark. R. Weisner and Jean-Yves Bottero —Environmental Nanotechnology applications
	and impact of nanomaterial, The McGraw-Hill Companies (2007).
E REI	FERENCES
1.	www.nptel.ac.in
2.	www.mit.co.in

COURSE CODE QNT103B	L	Т	Р	С
COURSE NAME PROPERTIES OF NANOPHASE	3	0	0	3
MATERIALS				
PREREQUISITES	L	Т	Р	Н
	3	0	0	3
UNIT I Structural Properties of Nano Materials				9
Crystal structures of nano particles; lattice vibrations; size-dependent of	prop	erties	; chem	nical &
mechanical properties; catalytic properties of nano-materials. Mechanica	al pro	operti	es: ha	rdness,
compressive & tensile strength; failure mechanisms of conventional	grai	n-size	ed ma	terials;
mechanical properties of nano-structured multilayers; metal nano cluster	com	posite	s; crys	stals of
metal nano particles; nano particle lattices in colloidal suspensions; n	netal	lic gl	lasses;	shape
memory alloys; thermodynamics & kinetics of phase transformations in s	ynth	esis o	f nano	phase
materials; structure: micro-structural stability; powder consolidation	; pr	operti	ies of	nano
materials at low temperatures; thermal contact & isolation				
UNIT II Electronic Properties of Nano-materials				9
Energy bands & gaps in semiconductors; Fermi surfaces; localized part	icle,	donoi	rs, acc	eptors,
deep traps, excitons, mobility; size-dependent effects, conduction electric	rons	& dii	nensic	onality,
Fermi gas & density of states, potential wells, partial confinement; electro	onic p	orope	rties of	f metal
nano clusters, semi-conducting nanoparticles, single-electron unnelling,	electi	onic	proper	ties of
unnelli and similar nano structures. Thermo-mechanical unnellin of thin-	film	nano	struct	ures: a
general framework for the thermo-mechanics of the multiplayer films.	, sur	face s	stress-	scaling
from micro to nano structures				
UNIT III Optical Properties of Nano-materials				9
Photonic crystals, optical properties of semiconductors, band edge energy	, bar	d gap	o deper	ndence
on nano crystalline size. Quantum dots; optical transitions; absorption;				
quantum confinements; fluorescence/luminescence; photoluminescence/				
excited emission; electroluminescence; Laser emission of quantum dot;	photo	o frag	menta	tion &
Coulombic explosion; phonons in nano structures. Luminescent quant	um d	ots f	or bio	logical
labelling				
UNIT IV Magnetic Properties of Nano Materials				9
Introduction of magnetic materials; basics of ferromagnetism; ferro-	magn	etic	resona	nce &
relaxation; magnetic properties of bulk nano structures; magnetic clust	ers;	dynar	nics o	f nano
magnets; nano-pore containment of magnetic particles; nano-carbon f	erro	magn	ets; g	iant &
colossal magneto resistance; ferro fluids; electron transport in magnetic r	nulti	layer	s: part	iculata
		2	~, r ···· ·	iculate
nano magnets; geometrical nano magnets. Spintronics; spin polarizo		•	-	
nano magnets; geometrical nano magnets. Spintronics; spin polarize interlayer exchange coupling; spin relaxation in magnetic metallic layer	ed e	lectro	n unn	elling;
	ed e	lectro	n unn	elling;

Metal nano particles; dendrimers; liposomes; property of nano materials in biosensor fabrication; near-field optics & nanofibers; bioreceptor (Antigen/Antibody, Enzymes, Nucleic acids/DNA, cellular structure/cells, biomimetic); nanocapsules; nanorods, DNA nano wires and other drug delivery vehicles; nano-crystalline structures of bone and calcium phosphate cements. Cobalt-based alloys; Titanium and its alloys; nano particles relating to Aluminum oxides; Hydroxyapatite; glass ceramics; ceramic implants; carbon implants. Nano shells – Tectodendrimers Nano particle drug systems; inorganic particle incorporated bionanocomposites.

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXT

- 1. Askeland D.R.,& P. P. Fullay (2007), The Science and Engineering of Materials 7thCengage Learning Publishers.
- William D. Callister, Jr (2008), Callister"s Materials Science and Engineering, (Adopted by R. Balasubramaniam) Wiley-Eastern

REFERENCES

 "Amorphous & Nano crystalline Materials: Preparation, Properties & Applications," A. Inoue & K. Hashimoto (Eds.), Springer, 2001.

E REFERENCES

1. www.nptel.ac.in

2. <u>www.mit.co.in</u>

COURSE CODE	QNT103C		L	Т	Р	С
COURSE NAME	NANOMEDICINE		3	0	0	3
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I PROSPE	CT OF NANO-MEDICINI	E				9
History of the idea – T	The Biological and Mechanic	cal Traditions – Nano-	medici	ne – T	Taxono	my –
Bio-Pharmaceuticals	- Implantable Materials -	- Implantable Device	es –	Surgi	cal Ai	ds –
•	Genetic Testing – Imaging -	-			•	- 1)
Resiprocytes – Mecha	nical Artificial Red Cells – 2	2) Using DNA as a con	nstructi	ion me	dium	
UNIT II NANOCA	ARRIERS FOR DRUG DE	LIVERY				9
Fundamentals and r	ationale of sustained / co	ontrolled/ targeted da	rug de	elivery	– Fa	ctors
influencing the desig	n and performance of sust	tained release / contr	olled	/ targe	eted re	lease
products – Needs and	l Requirements of nanocarrie	ers – Nanoparticle Flo	w: Imp	olicatio	ns for	Drug
Delivery – Polymeric	Nanoparticles as Drug Carrie	ers and Controlled Rel	ease Ir	nplant	Devic	es.
UNIT III NANOI	PARTICULATE SYSTEM	S FOR DRUG DELI	VERY			9
Polymer used for the	e formulation of controlled	drug delivery system	ms –	Classif	ication	and
applications of polym	ers – Polymeric Micelles as l	Drug Carriers – Dendr	imers a	as Nan	opartic	ulate
Drug Carriers – Nanc	ocapsules preparation, Charac	cterization and Therap	eutic A	pplica	tions	
UNIT IV LIPID	BASED NANOCARRIERS					9
-	tic Vaccines and cancer thera					
	es – Lipoproteins as Pharmac	ceutical Carriers – Sol	id Lipi	d Nano	opartic	les
	pidic core nanocapsules					1
	ARRIERS AS DRUG TAR					9
1 0	Delivery systems for the del				nal Tra	ct,
	ystem, Cardiovascular Syste		• 1	natic		
LECTURE	TUTORIAL	PRACTICA	L		TOTA	AL
45	0	0			45	
ТЕХТВООК						
0	Ashish., "Nano Medicines",	e ·				
	"Nanoparticulates as Drug	Carriers", Imperial Co	llege F	Press, 2	2006	
REFERENCES						
1. Reza.A., Kent	us. L., "Smart Nanoparticles	in Nanomedicine ", V	oume	8, Ker	ntus Bc	ooks,
2005						
2005						
2005 E REFERENCES						
2005						

COURSE CODE	QNT103D			L	Т	Р	С
COURSE NAME	NANOTECHNOLOGY	IN ENE	RGY	3	0	0	3
	CONVERSION AND ST	FORAGE					
PREREQUISITES			I	[]	Т	Р	Н
				3	0	0	3
UNIT I Introd							9
Nanotechnology for	sustainable energy- Energy	y conversion proc	ess, indire	ect a	and di	rect er	nergy
conversion-Materials	for light emitting diode	s-batteries-advanc	ed turbine	es-c	atalyti	c reac	ctors-
capacitors-fuel cells							
UNIT II Renew	able Energy Technology						9
Energy challenges,	development and implement	entation of renew	wable ener	rgy	techn	ologie	es -
	oled renewable energy tec					-	
	ro, and poly crystalline a	-					
-	various techniques of Si dep	-			,		
-	Fuel Cell Technology						9
			· ·	<u> </u>			_
	nnologies, integration and	-				-	
	fabrication methods - design	n methodologies -	micro-fue	l ce	ll pow	er sou	
UNIT IV Microf	U U						9
NT		1	1 •		0000	engine	es -
Nano-electromechan	ical systems and nove	l microfluidic	devices -	- I	lano	cingini	00
	ical systems and nove - power generation - mi					U	
drivingmechanisms	•	crochannel batter	y - micro	he	at eng	ine (N	(HE)
drivingmechanisms fabrication - thermo	- power generation - mi	crochannel batter	y - micro	he	at eng	ine (N	(IHE)
drivingmechanisms fabrication - thermod UNIT V Hydrog	- power generation - mi capillary forces -Thermoca gen Storage Methods	crochannel batter pillary pumping (y - micro TCP) - pie	he zoe	at eng lectric	ine (M memb	(IHE) orane 9
drivingmechanisms fabrication - thermoo UNIT V Hydrogen storage m	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides	crochannel batter pillary pumping ([*] - size effects -	y - micro TCP) - pie hydroger	he zoe	at eng lectric	ine (M memb	(IHE) orane 9 ity -
drivingmechanisms fabrication - thermoo UNIT V Hydrogen Hydrogen storage m hydrogen reaction ki	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle-	crochannel batter pillary pumping (- size effects - gravimetric and	y - micro TCP) - pie hydrogen volumetric	he zoe sto	at eng lectric orage rage c	ine (N memb capaci	AHE) orane 9 ity - ies -
drivingmechanisms fabrication - thermoo UNIT V Hydrogen Hydrogen storage m hydrogen reaction ki hydriding/debydridin	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- g kinetics -high enthalpy	crochannel batter pillary pumping (- size effects - gravimetric and	y - micro TCP) - pie hydrogen volumetric	he zoe sto	at eng lectric orage rage c	ine (N memb capaci	AHE) orane 9 ity - ies -
drivingmechanisms fabrication - thermoor UNIT V Hydrogen Hydrogen reaction kin hydriding/delydriding the hydriding reaction	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- g kinetics -high enthalpy n.	crochannel batter pillary pumping (- size effects - gravimetric and of formation - ar	y - micro TCP) - pie hydroger volumetric nd thermal	he zoe sto	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d	AHE) prane y ty - ies - uring
drivingmechanisms fabrication - thermoo UNIT V Hydrogen Hydrogen storage m hydrogen reaction ki hydriding/deHydridin the hydriding reactio	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- ig kinetics -high enthalpy n. TUTORIAL	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRACT	y - micro TCP) - pie hydroger volumetric nd thermal	he zoe sto	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d TOTA	AHE) prane y ty - ies - uring
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/de+ydriding the hydriding reaction LECTURE 45	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- g kinetics -high enthalpy n.	crochannel batter pillary pumping (- size effects - gravimetric and of formation - ar	y - micro TCP) - pie hydroger volumetric nd thermal	he zoe sto	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d	AHE) prane y ty - ies - uring
drivingmechanisms fabrication - thermoor UNIT V Hydrogen Hydrogen storage m hydrogen reaction ki hydriding/debydriding the hydriding reaction LECTURE 45 TEXT	 power generation - mit capillary forces -Thermoca gen Storage Methods tethods - metal hydrides netics -carbon-free cycle- ig kinetics -high enthalpy n. 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRACT 0	y - micro TCP) - pie hydroger volumetric nd thermal	hea zoe n sto sto ma	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d TOTA	AHE) prane y ty - ies - uring
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/de $+$ ydridin the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani, D	- power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- ig kinetics -high enthalpy n. TUTORIAL	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRAC1 0 dision Wesley Res	y - micro TCP) - pie hydrogen volumetric nd thermal	hea zoe n sto sto ma	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d TOTA	(IHE) prane y ity - ies - uring
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/de $+$ ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo	 power generation - mit capillary forces -Thermoca gen Storage Methods tethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRACT 0 dision Wesley Rea ls, Mc Graw Hill,	y - micro TCP) - pie hydrogen volumetric nd thermal	hea zoe n sto sto ma	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d TOTA	(IHE) prane y ity - ies - uring
drivingmechanisms fabrication - thermoor UNIT V Hydrogen Hydrogen storage m hydrogen reaction ki hydriding/de $+$ ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel co	 power generation - micapillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- ing kinetics -high enthalpy n. TUTORIAL 0 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRAC1 0 dision Wesley Reals, Mc Graw Hill, RC Press, (2003).	y - micro TCP) - pie hydroger volumetric nd thermal TICAL ading, (197 (1984).	he zoe n sto sto ma	at eng lectric orage rage c nagen	ine (M memb capaci apacit apacit nent d TOTA 45	(HE) prane 9 ity ies uring
drivingmechanisms fabrication - thermoo UNIT V Hydrog Hydrogen storage m hydrogen reaction ki hydriding/de⊦ydridin the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handb (2003)	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cyclearg kinetics -high enthalpy n. TUTORIAL 0 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRAC1 0 dision Wesley Reals, Mc Graw Hill, RC Press, (2003).	y - micro TCP) - pie hydroger volumetric nd thermal TICAL ading, (197 (1984).	he zoe n sto sto ma	at eng lectric orage rage c nagen	ine (M memb capaci apacit apacit nent d TOTA 45	(HE) prane 9 ity ies uring
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kit hydriding/de $+$ ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handba (2003) REFERENCES	 power generation - micapillary forces -Thermocagen Storage Methods ethods - metal hydrides - netics -carbon-free cycleage kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Adok of Batteries and fuel cellell technology handbook. Cloook of fuel cells: Fuel cell 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRACT 0 dision Wesley Reals, Mc Graw Hill, RC Press, (2003). technology and a	y - micro TCP) - pie hydrogen volumetric nd thermal TICAL ading, (19' (1984). pplications	70).	at eng lectric orage rage c nagen	ine (M memb capaci apacit nent d TOTA 45	AHE prane 9 ity ies uring AL
drivingmechanisms fabrication - thermoo UNIT V Hydrog Hydrogen storage m hydrogen reaction ki hydriding/de⊦ydridin the hydriding reactio LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel co 4. Vielstich, Handb (2003) REFERENCES 1. J. Twidell and T. V	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Adok of Batteries and fuel celled technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Reserved technology for the second seco	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRAC1 dision Wesley Reals, Mc Graw Hill, RC Press, (2003). technology and ap	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL ading, (197 (1984). pplications Spon Ltd,	hear zoe n sto sto ma 70).	at eng lectric Drage rage c nagen	ine (M memb capaci apacit nent d TOT 45 CRC F (1986)	AHE) prane 9 ity - ies - uring AL
drivingmechanisms fabrication - thermoo UNIT V Hydrog Hydrogen storage m hydrogen reaction ki hydriding/dehydridin the hydriding reactio LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handb (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S	 power generation - mi capillary forces -Thermoca gen Storage Methods ethods - metal hydrides netics -carbon-free cycle- ig kinetics -high enthalpy n. TUTORIAL 0 Trect energy conversion, Ad ok of Batteries and fuel celled in technology handbook. Chook of fuel cells: Fuel cell Weir, Renewable Energy Re olar cells: Operating princip	crochannel batter pillary pumping (- size effects - gravimetric and v of formation - ar PRACT dision Wesley Reals, Mc Graw Hill, RC Press, (2003). technology and ap esources, E & F N ples, technology a	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL ading, (197 (1984). pplications Spon Ltd,	hear zoe n sto sto ma 70).	at eng lectric Drage rage c nagen	ine (M memb capaci apacit nent d TOT 45 CRC F (1986)	AHE prane 9 ity ies uring AL
drivingmechanisms fabrication - thermoor UNIT V Hydrogen Hydrogen storage m hydrogen reaction kii hydriding/de⊦ydridin the hydriding reactio LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handb (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cyclearg kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ook of Batteries and fuel cellell technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Reformed on the cells: Operating princing nglewood Cliffs, NJ, USA, 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - ar PRAC1 0 dision Wesley Reals, Mc Graw Hill, RC Press, (2003). technology and ap esources, E & F N ples, technology a (1981).	y - micro TCP) - pie hydrogen volumetric nd thermal CICAL ading, (19' (1984). pplications Spon Ltd, nd system	he. zoei n sto sto ma 70).	At eng lectric orage rage c nagen //iley, (ndon, licatio	ine (M memb capaci apacit nent d TOT 45 CRC F (1986)	AHE) prane 9 ity ies uring AL
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/de+ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel co 4. Vielstich, Handbo (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E 3. H J Moller, Semice	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ok of Batteries and fuel celled technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Recolar cells: Operating princip nglewood Cliffs, NJ, USA, onductor for solar cells, Art 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - an PRAC1 0 dision Wesley Rea ls, Mc Graw Hill, RC Press, (2003). technology and a esources, E & F N ples, technology a (1981). ech House Inc, M	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL (1984). pplications Spon Ltd, nd system A, USA, (hear zoe sto ma 70).	at eng lectric Drage rage c nagen Viley, (ndon, v licatio 3).	ine (M memb capaci apacit nent d TOT 45 CRC F (1986) ons,	AHE prane ity ies uring AL Press
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/de+ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel co 4. Vielstich , Handb (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E 3. H J Moller, Semic 4. Ben G Streetman,	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cyclearg kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ook of Batteries and fuel cellell technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Reformed on the cells: Operating princing nglewood Cliffs, NJ, USA, 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - an PRAC1 0 dision Wesley Rea ls, Mc Graw Hill, RC Press, (2003). technology and a esources, E & F N ples, technology a (1981). ech House Inc, M	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL (1984). pplications Spon Ltd, nd system A, USA, (hear zoe sto ma 70).	at eng lectric Drage rage c nagen Viley, (ndon, v licatio 3).	ine (M memb capaci apacit nent d TOT 45 CRC F (1986) ons,	AHE) prane ity ies uring AL
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kit hydriding/de \downarrow ydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handbo (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E 3. H J Moller, Semic 4. Ben G Stretman, (1995)	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ok of Batteries and fuel celled technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Recolar cells: Operating princip nglewood Cliffs, NJ, USA, onductor for solar cells, Art 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - an PRAC1 0 dision Wesley Rea ls, Mc Graw Hill, RC Press, (2003). technology and a esources, E & F N ples, technology a (1981). ech House Inc, M	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL (1984). pplications Spon Ltd, nd system A, USA, (hear zoe sto ma 70).	at eng lectric Drage rage c nagen Viley, (ndon, v licatio 3).	ine (M memb capaci apacit nent d TOT 45 CRC F (1986) ons,	AHE) prane ity ies uring AL
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kin hydriding/dehydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel co 4. Vielstich, Handb (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E 3. H J Moller, Semic 4. Ben G Streetman, (1995) E REFERENCES	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ok of Batteries and fuel celled technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Recolar cells: Operating princip nglewood Cliffs, NJ, USA, onductor for solar cells, Art 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - an PRAC1 0 dision Wesley Rea ls, Mc Graw Hill, RC Press, (2003). technology and a esources, E & F N ples, technology a (1981). ech House Inc, M	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL (1984). pplications Spon Ltd, nd system A, USA, (hear zoe sto ma 70).	at eng lectric Drage rage c nagen Viley, (ndon, v licatio 3).	ine (M memb capaci apacit nent d TOT 45 CRC F (1986) ons,	AHE) prane ity ies uring AL
drivingmechanisms fabrication - thermood UNIT V Hydrogen Hydrogen storage m hydrogen reaction kit hydriding/dehydriding the hydriding reaction LECTURE 45 TEXT 1. M.A. Kettani , D 2. Linden , Hand bo 3. Hoogers , Fuel ce 4. Vielstich, Handbo (2003) REFERENCES 1. J. Twidell and T. V 2. Martin A Green, S Prentice Hall Inc,E 3. H J Moller, Semic 4. Ben G Stretman, (1995)	 power generation - mit capillary forces -Thermoca gen Storage Methods ethods - metal hydrides - netics -carbon-free cycle-ig kinetics -high enthalpy n. TUTORIAL 0 irect energy conversion, Ad ok of Batteries and fuel celled technology handbook. Cloook of fuel cells: Fuel cell Weir, Renewable Energy Recolar cells: Operating princip nglewood Cliffs, NJ, USA, onductor for solar cells, Art 	crochannel batter pillary pumping (* - size effects - gravimetric and v of formation - an PRAC1 0 dision Wesley Rea ls, Mc Graw Hill, RC Press, (2003). technology and a esources, E & F N ples, technology a (1981). ech House Inc, M	y - micro TCP) - pie hydrogen volumetric ad thermal TICAL (1984). pplications Spon Ltd, nd system A, USA, (hear zoe sto ma 70).	at eng lectric Drage rage c nagen Viley, (ndon, v licatio 3).	ine (M memb capaci apacit nent d TOT 45 CRC F (1986) ons,	AHE) prane 9 ity - ies - uring AL Press, 0.

COURSE CODE	QNT202A		L	Т	P	С
COURSE NAME	NANOSCALE MAG	NETIC MATERIALS	3	0	0	3
	AND DEVICES					
PREREQUISITES			L	Т	P	Η
			3	0	0	3
UNIT I Introduction	n					9
-	-	erials – Domains and the m	-		-	
		amagnetism in fine part				
anisotropy - Induced a	nisotropy in thin films	-Electron transport in m	agnet	ic m	ılti-la	ayers
- Spin polarized elec	tron tunneling – Inter	rlayer exchange coupling	–Spi	n rela	axatio	on in
magnetic metallic layers	and multi-layers - No	n-equilibrium spin dynamic	s in la	terall	y de	fined
magnetic structures						
UNIT II Nanomagne	tism					9
Two-spin channel mode	l - Two terminal spin	electronics - Three termin	al sp	in ele	ctror	nics -
Spin tunneling - Study	of ferromagnetic and	antiferromagnet interface	s –	Phote	oemi	ssion
Electron Microscopy -	X-ray Absorption Spec	troscopy - X-ray Magneti	c Lin	ear I	Dichr	roism
(XMLD) - X-ray Mag	netic Circular Dichrois	m (XMCD) -Temperature	depen	dence	e of X	K-ray
Magnetic Dichroism.						
UNIT III Fabrication	n and Imaging					9
Molecular nanomagnets	s – Mesoscopic magnet	tism - Particulate nanomag	gnets	– Ge	ome	trical
nanomagnets -Fabricat	tion techniques scaling	- Characterization using v	ariou	s tecl	nniqu	ies –
Imaging magnetic micro	ospectroscopy –Optical	Imaging – Lorentz Micr	oscop	ру –	Ele	ctron
Holography of Magnet	ic Nanostructures –Mag	gnetic Force Microscopy				
UNIT IV Magnetic I	Data Storage and Recor	ding				9
Magnetic data storage	– Disk formatting – F	Partitioning – Hard disk fe	ature	s – I	Iard	disk
data transfer modes	–Programmed I/O –	Direct memory access –	Ultra	DMA	· -	Data
addressing - Standard	CHS addressing -	Extended CHS addressing	_	Logi	cal E	Block
Addressing - Magnet	ic recording - Princip	les of magnetic recording	- N	lagne	tic d	igital
recording - Perpendicu	lar recording - Magne	to-Optic recording - Magn	etic	media	a —	Kerr
effect - Faraday effect.						
UNIT V Magnetic St	tructures and Applicati	ons				9
Magnetic sensors and	Giant Magnetoresistar	nce - Optically transparer	nt ma	aterial	s -	Soft
ferrites - Nanocompo	osite magnets - Magnet	etic refrigerant – High T	C sup	percon	nduct	tor –
Ferro/biofluids - Biome	edical applications of ma	agnetic nanoparticles - Diag	nostic	c appl	icati	ons -
Therapeutic applications	- Physiological aspects	- Toxic effects.				
LECTURE	TUTORIAL	PRACTICAL		TC	DTA	L
45	0	0			45	
TEXT						
TEXT	Iopster H., —Magnetic M	Aicroscopy of Nanostructure	esl, Sp	oringe	r (20	004)

- 1. Bland J.A.C., and B. Heinrich.B., —Ultra thin Magnetic Structures III Fundamentals of Nanomagnetisml, Springer (2004).
- 2. Nicola A.S., —Magnetic Materials: Fundamentals and Device Applications^{II}, Cambridge University Press (2003).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

COURSE CODE	QNT202B	L	Т	Р	С
COURSE NAME	METALLOPOLYMER NANOCOMPOSITES	3	0	0	3
PREREQUISITES		L	Т	Р	Η
	•	3	0	0	3
UNIT I Nanopar	ticles In Materials Chemistry And In The Natural Scie	ence	es		9
Classification of na	noparticles by size - Structural organization of	na	nopa	rticles	—
Dimensional phenom	nena in the chemistry and physics of nanoparticles –	nai	nopar	ticles	and
materials on their	base characteristic features of nanoparticles nucleat			ic	on –
Kinetic features of r	new phase formation – Phase formation in chemical	rea	ction	s –	Self
organization of meta	l containing nanoparticles (Fractal structures) - Brief	f ac	count	t of n	najor
production methods	of metal containing nanoparticles - Metal clusters as	nan	opart	icles	with
fixed dimensions.					
UNIT II Principle	s and Mechanisms of Nanoparticle Stabilization by Po	olyn	ners		9
Stability of nanopar	ticles in solutions - Stabilizing capability characteristic	ics	of p	olyme	ers –
Characteristics of p	olymer absorption on metal surfaces specifics of polymer	mer	surf	actan	ts as
stabilizers - Mech	anism of nanoparticles stabilization by polymers -	- S	tabili	zatior	n of
nanoparticles by ele	ctrolytes - Surface proofing as a method of stabilizing	ng n	anop	article	es by
polymers on the prob	lem of matrix confinement				
UNIT Syntheti	c Methods for Metallo-Polymer				9
III					
Nanocomposite prepa	aration – Physical methods of incorporating nanoparti	icle	s into	poly	mers
- Mechanochemical	dispersion of precursors jointly with polymers - M	Mic	roenc	apsul	ation
	to polymers – Physical deposition of metal nanopartic		-	-	
Formation of 2D nar	nostructures on polymers – Formation of metal nanopa	artio	cles i	n pol	ymer
=	– Physical modification and filling of polymers with				
	metal complexes - Nanocomposites formation by				-
	vsis –Nanocomposite formation in monomer – Pol	-		atrice	s in
<i>v</i>	omposites on the base of polymer – Immobilized metalloc		ters		
-	Chemical Methods for Metallo-Polymer Nanocomposition	ite			9
IV Product					
	ds of atomic metal deposition on polymers – Metal evapo				
	t room temperature - Synthesis of nanocomposites in a				
	in polymer solutions - Photolysis of metal-polymer s	•			
-	composites – Electrochemical methods of nanocomp	-			
	cs of sol-gel reactions – A combination of polymerization				
	s of nanocomposites – Sol-gel synthesis in the presen				
	tal model of Hybrid nanocomposites – Nanocompos			-	-
	nics – Intercalation process – Polymerization into th				
	roduction into the layered host lattices –Intercalatio			-	
	halcogenide type – Langmuir-Blodgett metallopolyn	ners	filn	ns as	self
organized hybrid nan	-				
UNIT V Nanobio	composites				9

Basic notion of metal containing protein systems – Metal nanoparticles in Immunochemistry, Cytochemistry and Medicine – Biosorption, selective heterocoagulation and bacterial concentration of metal nanoparticles – Sol-gel process as a way of template – Synthesized nanobioceramics – Biomineralization and bioinorganic nanocomposites – Control of physicmechanical properties of nanocomposites – Peculiarity of nanocomposites synthesized by solgel methods – Polyolefin based nanocomposites – Polymer matrix structurization in nanocomposites – Physical and mechanical properties of metallopolymer nanocomposites – Nanocomposites in adhesion compounds and Tribopolymers – New trends in Material science connected with metallopolymeric nanocomposites

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45

TEXT

1. C. F. Candau and R. H. Ottewill, —An introduction to polymer colloids, Springer Berlin Heidelberg, New York, (2005)

REFERENCES

1. A. D. Pomogailo and V. S. Savostyanov, —Synthesis and polymerization of metal containing monomers (RC press, (1994).

E REFERENCES

- 1. <u>www.nptel.ac.in</u>
- 2. <u>www.mit.co.in</u>

Synthesis - Particle dens Nanoparticle UNIT II Polymer ch	CHEMI 7 Organic Biomime Sity – Co s by orga	NANOCHEMISTRY		3 L 3	0 T 0	0 P 0	3 H 3
UNIT I Synthesis by Synthesis - T Particle dens Nanoparticle UNIT II Polymer ch	CHEM 7 Organic Biomime Sity – Co s by orga	Molecule Templates – Molecule Templates – Molecule Templates – Molecule tic Synthesis – Oxide Nanomposite structure – Pore st					
Synthesis by Synthesis - T Particle dens Nanoparticle UNIT II Polymer ch	v Organic Biomime sity – Co s by orga	Molecule Templates – Molecule Templates – Molecule Templates – Molecule tic Synthesis – Oxide Nanomposite structure – Pore st		3	0	0	3
Synthesis by Synthesis - T Particle dens Nanoparticle UNIT II Polymer ch	v Organic Biomime sity – Co s by orga	Molecule Templates – Molecule Templates – Molecule Templates – Molecule tic Synthesis – Oxide Nanomposite structure – Pore st					1
Synthesis - Particle dens Nanoparticle UNIT II Polymer ch	Biomime sity – Co s by orga	tic Synthesis – Oxide Nan mposite structure – Pore st	ecular Self-Assembly				9
contribution applications	mics of j methods – Synthe	NCED POLYMERIC MAT stics – Static light scatterin polymer solutions – Polymer – High performance thermo- etic biomedical polymers – osite material – Fabrication	ERIALS g – Hydrodynamics r blends – Solubility oplastics – Polymer m Optical fibers – A	size – odifica of po para nateria Asseml	- Partic ation of lymer meters l for p bly of	cle sha of inor solutions and g ohotove polyn	ape - ganic 9 ons - group oltaic ner -
	and their	MOLECULAR CHEMIST applications – From molec Coordination Chemistry and	cular to supramolecula		-		
Recognition	Applicati	•					9
 Physical particles 	oroperties 5 – Gold vinyl ac application	Homogeneous, heterogeneous s of free and supported national nanoparticles – Preparative cetate synthesis – hydrogen on. TROCHEMISTRY OF NAN	noparticles – Reactiv methods and propertion nation – CO oxidation	ity of es – F	support Seactio	orted : ons – V	ticles meta Wate
Electrochemi Metallic Nar Electron Eve Nanosensors	istry with noparticle ents, Prol –Biosens	Semiconductor Nanostruct n Nanoparticles – Preparatio es – Monolayer protected na bing Nanoparticles using Ele sors – Chemical Sensors –Ele	on of Nanostructures, noclusters, Nanoelectr ectrochemistry Couple ectrocatalysis.	, Elec rode I ed wit	troche Enseml	mistry bles, S etrosec	Films with Single opy -
LECT 45		TUTORIAL 0	PRACTICA 0			ТОТ 45	

1. Hosokawa.M., Nogi.K., Naito.M. Y., "Nanoparticle Technology Handbook" Vol. I,
Elsevier, 2007
2. Pignataro.B., "Tomorrow's Chemistry Today, Concepts in Nanoscience, Organic
Materials and Environmental Chemistry", Wiley-Vch Verlag GmbH, 2008.
REFERENCES
1. Carraher.C. E., Seymour . R. B., "Polymer Chemistry", CRC / Taylor and Francis, 2008
2. Rao. C. N. R., Mu"ller.A., Cheetham.A. K., "The Chemistry of Nanomaterials: Synthesis,
Properties and Applications", Wiley-Vch Verlag GmbH, 2004
3. Ozin.G.A., Aresenault.A.C., "Nanochemistry: A Chemical Approach to Nanomaterials",
RSC
Publishing, 2005.
4.Br'echignac.C., Houdy.P., Lahmani. M., "Nanomaterials and Nanochemistry", Springer-
Verlag, 2007
E REFERENCES
www.nptel.ac.in
www.mit.co.in

COURSE CODE	QNT202D		L	Т	P	С
COURSE NAME	NANOTOXICOLOGY		3	0	0	3
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I Possible	e Health Impact of Nanom	aterials				9
Sources of Nanopart	icles; Epidemiological Evi	dence; Entry Routes into	the H	Iumar	n Bod	y –
Lung, Intestinal Trac	t, Skin; Nano particle Size	e - Surface and Body Di	strib	ution;	Effe	ct of
Size and Surface C	Charges; Nanoparticles, Thr	ombosis and Lung Inflamm	natio	n ;Nai	nopart	icles
and Cellular Uptake;	Nanoparticles and the Blood	d-Brain Barrier				
UNIT II Nanom	aterials for Environmental	Remediation				9
Introduction- Nanop	article-based Remediation	Materials - Acid-Base	Cher	nistry	- R	edox
Chemistry - Field D	Deployments of ZVI - At	osorption Chemistry - Hy	brid	Nano	ostruc	tured
Remediation Materi	als - Self-assembled Mor	nolayers on Mesoporous S	uppo	orts (S	AMM	1S) -
Functional CNTs .						
UNIT III Biotoxi	city of Metal Oxide Nanop	articles and Carbon Nand	otube	s		9
Introduction; Nanop	articles in the Environm	ent; Nanoparticles in M	lamn	nalian	Syst	ems;
Health Threats; Nar	nomaterials and Biotoxicity	; Iron Oxide; Titanium Di	oxide	e; Dar	k Stu	dies;
	es;Other Metal Oxides; Tox					
CNTs- case study;	Toxicity of CNTs and	Occupational Exposure	Ris	k; To	oxicity	y of
MWCNTs/SWCNTs	and Impact on Environment	al Health				
UNIT IV Toxicol	ogy of Nanopartiles in Env	vironmental Pollution				9
Air Pollution; Introdu	uction to Air Pollution Parti	cles; Adverse Effects of PM	<i>I</i> in 1	Epide	miolo	gical
Studies; Role of Nar	opartides in Mediating the	Adverse Pulmonary Effect	cts of	FPM;	Effec	ts of
Nanopartides on the	Cardiovascular System; Na	nopartide Translocation a	and	Direct	Vas	cular
Effects; Endothelial	Dysfunction and Endogen	nous Fibrinolysis; Coagulat	ion a	und Tl	hromb	osis;
Cardiac Autonomie	Dysfunction; Effects of N	anopartides on the Liver	and	Gastr	ointes	stinal
Tract; Effects of NP	on the Nervous System.					
	try, Epidemiology and Tox					9
1 0	dence for Health Effect A					
C	nce for Ambient Particula					,
-	le Dosimetry; Toxicolog	-	ı Eff	ects (Cause	d by
	ated Concept of Risk Assess	▲				
LECTURE	TUTORIAL	PRACTICAL		T	OTAI	_
45	0	0			45	
TEXT						
	R. Kumar, —Nanomate	rials - Toxicity, Health	and	Env	ironm	ental
	y-VCH publisher (2006).					
•	Monteiro-Riviere, C. Lang	-	y: (Charac	eteriza	tion,
Dosing and 1	Health Effects ^{II} , Informa hea	althcare (2007)				

REFERENCES

- 1. D. Drobne, —Nanotoxicology for safe and Sustainable Nanotechnology^{II}, Dominant publisher (2007).
- 2. M. Zafar Nyamadzi, —A Reference handbook of nanotoxicologyl, Dominant publisher (2008).

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE CODE	QNT301A		L	Т	P	С
COURSE NAME	GREEN MANUFACTU	RING TECHNOLOGY	3	0	0	3
PREREQUISITES			L	Т	Р	Η
			3	0	0	3
UNIT I Green M	Ianufacturing Trends					9
Green Manufacturin	g: Fundamentals and A	pplications - basic defin	ition	s an	d is	ssues
surrounding green ma	anufacturing at the process,	machine and system - gove	ernme	ent m	otiva	tions
for green manufactur	ring - traditional manufact	turing to green manufa	cturi	ng -	econ	omic
issues- surrounding	green manufacturing - th	he areas of automotive,	semio	condu	ctor	and
medical areas as we	ll as in the supply chain	and packaging areas Green	n Ma	nufac	turin	g.
UNIT II Sustaina	able Green Manufacturing					9
Introduction - sustain	able green manufacturing	-green manufacturing susta	inabi	ility p	proce	sses,
requirements, and ris	k - The sustainable lean	and green audit process.	Inter	natio	nal g	green
manufacturing standa	rds and compliance. Green	n rapid prototyping and ra	pid	manu	factu	ring.
Green flexible autor	nation. Green collaboration	n processes . Alternative	energ	gy 1	resou	rces.
Globally green man	nufacturing supply chains	and logistic networks.	Sust	ainab	le g	green
manufacturing system	design.					
UNIT III Waste N	Ianagement					9
Sustainability and gl	obal conditions - Mater	rial and solid waste mana	gem	ent -	En	nergy
management -chemic	al waste management and	green chemistry - Clim	ate c	chang	e an	d air
emissions managemen	nt - Supply water and wast	e water management - Env	ironn	nenta	l busi	iness
management						
UNIT IV Industri	0.					9
Introduction-Material	flows in chemical	manufacturing-Industrial	р	arks	Asses	ssing
opportunities for wa	aste exchanges and by pro-	oduct synergies-Life cycle	e co	ncept	s-Pro	oduct
	en engineering-Regulatory					
manufacturing Met	rics and analytical tools	Green supply chainsPr	esent	state	e of g	green
manufacturing.						
	lastics Manufacturing					9
	nercial plastics and elastom	· · · · · ·				
	from microbial and plat					
	astics from vegetable oils -					
	ements and clay nanocomp	osites -Biodegradability, li	fe cy	cle as	ssessi	ment
and economics of usir						
LECTURE	TUTORIAL	PRACTICAL		TO	DTA	L
45	0	0			45	
					73	
ТЕХТ						
1. T. David Allen ar	nd David R. Shonnard, Green					
1. T. David Allen ar 2. David Dornfeld, (nd David R. Shonnard, Green Green manufacturing fundan					
 T. David Allen ar David Dornfeld, ((2002). 		nental and applications, Pres	ntice	hall	2).	

4. James clark, Green chemistry, Blackwell publishing (2008)

REFERENCES

- 1. Paulo Davim, Sustainable Manufacturing, Wiley publications (2010).
- 2. Frank Kreith, George Tchobanoglous, Solid waste management, McGraw Hill (2002).
- 3. E. S. Stevens, Green plastics, Princeton university press (2002).
- 4. U. Robert Ayres, A Handbook of Industrial Ecology, Edward elgar publishing (2002).

E REFERENCES

- 1. www.nptel.ac.in
- 2. <u>www.mit.co.in</u>

COURSE CODE	QNT301B	L	Т	Р	С
COURSE NAME	ADVANCED CRYSTAL GROWTH	3	0	0	3
	TECHNIQUES				
PREREQUISITES		L	Т	P	Η
1		3	0	0	3
UNIT I Crysta	l Growth Theory				9
Introduction – Nuc	leation - Gibbs - Thomson equation for n	elt and	soluti	on –	kinetic
theory of nucleation	on -Limitation of classical nucleation - Rate	of nucl	eation	– D	ifferent
shapes of nucleus $-$	spherical, cap shaped and cylindrical.				
UNIT II Growt	h from Melt				9
Bridgeman method	- Kyropolous method - Czochralski method	– Verne	uil me	thod -	- Zone
melting method. Gr	owth from flux – Slow cooling method	– Tem	peratur	e dif	ference
method - High pre	ssure method – Solvent evaporation method –	Top seed	led sol	ution g	growth
	h from Vapor Phase			-	9
	osition – Chemical vapor transport – O	ben and	Close	d svst	em –
• • •	chemical vapor deposition process – Physical a			•	
affecting growth pro				mour	luctors
UNIT IV Growt					9
	ons – Solubility – Preparation of a so	lution	Sc	turoti	-
SOLVEIL AND SOUTH	-3010011110 - 1100011011011011011010101010				
	• •				
supersaturation –	Measurement of supersaturation - Expression	for supe	rsatura	ation -	- Low
supersaturation – temperature growth	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans	for supe on jar me	ersatura ethod –	ation – - Evap	- Low oration
supersaturation – temperature growth method – Tempera	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization	for supe on jar me n.Growtl	ersatura ethod – h fro	ation - - Evap m g	- Low oration els –
supersaturation – temperature growth method – Tempera Experimental meth	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu	for supe on jar me n.Growtl ction m	ersatura ethod – h fro ethod	ation – - Evap m g – Co	- Low oration els –
supersaturation – temperature growth method – Tempera Experimental meth	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization	for supe on jar me n.Growtl ction m	ersatura ethod – h fro ethod	ation – - Evap m g – Co	- Low oration els –
supersaturation – temperature growth a method – Tempera Experimental meth decomposition metho UNIT V EPITA	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu od – Solubility reduction method – Growth by h	for supe on jar me n.Growtl ction m vdrothern	ersatura ethod - h fro ethod mal me	ation – - Evap m g – Co ethod.	- Low oration els – omplex 9
supersaturation – temperature growth a method – Tempera Experimental meth decomposition metho UNIT V EPITA	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu od – Solubility reduction method – Growth by h	for supe on jar me n.Growtl ction m vdrothern	ersatura ethod - h fro ethod mal me	ation – - Evap m g – Co ethod.	- Low oration els – omplex 9
supersaturation – temperature growth a method – Tempera Experimental method decomposition method UNIT V EPITA Vapor phase epita	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu od – Solubility reduction method – Growth by h	for supe on jar me n.Growtl ction m ydrothern m epita:	ersatura ethod – h fro ethod mal me	ation – – Evap – Co ethod. Atomi	- Low oration els – omplex 9 c layer
supersaturation – temperature growth a method – Tempera Experimental method decomposition method UNIT V EPITA Vapor phase epita	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu od – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bea	for supe on jar me n.Growth ction m /drothern m epita: hemical	ersatura ethod – h fro ethod mal me	ation – - Evap – Co ethod. Atomi	- Low oration els – omplex 9 c layer
supersaturation – temperature growth a method – Tempera Experimental meth decomposition metho UNIT V EPIT Vapor phase epita epitaxy – Electro-	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redu od – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bea epitaxy – Metalorganic vapor phase epitaxy – C	for supe on jar me n.Growth ction m /drothern m epita: hemical	ersatura ethod – h fro ethod mal me	ation – – Evap m g – Co ethod. Atomi epitaxy TO	- Low oration els – omplex 9 c layer 7.
supersaturationtemperature growthmethod-ExperimentalmethoddecompositionunitVapor phase epitalepitaxyElectro-LECTURE45TEXT	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h MAXY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0	for supe on jar me n.Growth ction m /drothern /drothern m epita: hemical CAL	ersatura ethod - h fro ethod mal me ky - beam e	ation – - Evap m g - Co thod. Atomi epitaxy TO	- Low oration els – omplex 9 c layer 7. TAL
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method V EPIT A Vapor phase epitate epitaxy – Electro- LECTURE 45 TEXT 1. Sangwal. K.,	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h AXY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – Control on the second of the second o	for supe on jar me n.Growth ction m ydrothern m epitat hemical CAL	rsatura ethod - h fro ethod mal me ky – beam e	Ation - Evap m g - Co ethod. Atomi epitaxy TO 2 294).	- Low oration els – omplex 9 c layer 7. TAL IS
supersaturation–temperature growthmethodmethod–Temperationmethoddecomposition <th>Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h MAXY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0</th> <th>for supe on jar me n.Growth ction m ydrothern m epitat hemical CAL</th> <td>rsatura ethod - h fro ethod mal me ky – beam e</td> <td>Ation - Evap m g - Co ethod. Atomi epitaxy TO 2 294).</td> <td>- Low oration els – omplex 9 c layer 7. TAL IS</td>	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h MAXY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0	for supe on jar me n.Growth ction m ydrothern m epitat hemical CAL	rsatura ethod - h fro ethod mal me ky – beam e	Ation - Evap m g - Co ethod. Atomi epitaxy TO 2 294).	- Low oration els – omplex 9 c layer 7. TAL IS
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method I EPITA Vapor phase epita epitaxy – Electro- LECTURE 1. Sangwal. K., 2. Faktor. M. M. (1988).	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization of solubility reduction method – Reduced – Solubility reduction method – Growth by here is a solution method – Growth by here is a solution of the solu	for supe on jar me n.Growth etion m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C	rsatura ethod – h fro ethod mal me ky – beam e beam e	ation – - Evap m g – Co thod. Atomi epitaxy TO 294). ann an	- Low oration els – omplex 9 c layer 7. TAL IS
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method V EPIT A $Vapor phase epitate epitaxy – Electro- LECTURE 1. Sangwal. K., 2. Faktor. M. M (1988). 3. Santhana Rag$	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0 —Elementary Crystal Growth 1st Ed., Saan Put and Garet. I., —Growth of crystal from vapor avan. P. and Ramasamy. P., —Crystal growth at	for supe on jar me n.Growth etion m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C	rsatura ethod – h fro ethod mal me ky – beam e beam e	ation – - Evap m g – Co thod. Atomi epitaxy TO 294). ann an	- Low oration els – omplex 9 c layer 7. TAL IS
supersaturationtemperature growthmethod– TemperationExperimentalmethoddecomposition <th>Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0 —Elementary Crystal Growth 1st Ed., Saan Put and Garet. I., —Growth of crystal from vapor avan. P. and Ramasamy. P., —Crystal growth at</th> <th>for supe on jar me n.Growth etion m vdrothern m epita: hemical CAL Disher, U 1st Ed., C</th> <td>rsatura ethod – h fro ethod mal me ky – beam e beam e</td> <td>ation – - Evap m g – Co thod. Atomi epitaxy TO 294). ann an</td> <td>- Low oration els – omplex 9 c layer 7. TAL IS</td>	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0 —Elementary Crystal Growth 1st Ed., Saan Put and Garet. I., —Growth of crystal from vapor avan. P. and Ramasamy. P., —Crystal growth at	for supe on jar me n.Growth etion m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C	rsatura ethod – h fro ethod mal me ky – beam e beam e	ation – - Evap m g – Co thod. Atomi epitaxy TO 294). ann an	- Low oration els – omplex 9 c layer 7. TAL IS
supersaturationtemperature growthmethod– TemperationExperimentalmethoddecompositionmethoddecompositionmethodUNITVaporphaseepitaxy=epitaxy=LECTURETEXT1.Sangwal. K.,2.Faktor. M. M.(1988).3.3.Santhana RagPublications,REFERENCES	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization of solubility reduction method – Reduced – Solubility reduction method – Growth by here is a solution method – Growth is a solution method	for supe on jar me n.Growth ction m /drothern m epita: hemical CAL Disher, U 1 st Ed., C	ersatura ethod – h fro ethod mal me ky – beam e beam e UK, (19 Chapm	ation - Evap m g - Co thod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU
supersaturation – temperature growth a method – temperature growth a method decomposition method decomposition method $VNIT V$ EPIT A Vapor phase epita epita $xy - E$ ectroe EECTURE 1 . Sangwal. K., 2. Faktor. M. M (1988). 3. Santhana Rag Publications, REFERENCES 1. Ramasamy. P.,	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Reduced – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTION 0 0 —Elementary Crystal Growth 1st Ed., Saan Pullar and Garet. I., —Growth of crystal from vapor avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal	for supe on jar me n.Growth ction m /drothern m epita: hemical CAL Disher, U 1 st Ed., C	ersatura ethod – h fro ethod mal me ky – beam e beam e UK, (19 Chapm	ation - Evap m g - Co thod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method $VNIT V$ EPITA Vapor phase epita epita epitaxy – Electro- LECTURE 1. Sangwal. K., 2. Faktor. M. M. (1988). 3. Santhana Rage Publications, REFERENCES 1. Ramasamy. P., University, Cher	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Redunded – Solubility reduction method – Growth by h MXY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTI 0 0 —Elementary Crystal Growth I 1st Ed., Saan Pullar and Garet. I., —Growth of crystal from vapor avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal nnai, (1991).	for supe on jar me n.Growth ction m /drothern m epita: hemical CAL blisher, U 1 st Ed., C id proces	ersatura ethod - h fro ethod mal me ky - beam e beam e UK, (19 Chapm ssll, 1 st	ation - Evap m g - Co ethod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS d Hall, RU
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method $VNIT V$ EPITA Vapor phase epita epitaxy – Electroe LECTURE LECTURE LECTURE Sangwal. K., 2. Faktor. M. M (1988). 3. Santhana Rag Publications, REFERENCES 1. Ramasamy. P., University, Che 2. Brice, J. C., – (1)	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization of solubility reduction method – Reduced – Solubility reduction method – Growth by here is a solution method – Growth	for supe on jar me n.Growth ction m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C ad proces Growth ications,	rsatura ethod – h fro ethod mal me ky – beam e beam e VK, (19 Chapm chapm chapm	Ation - Evap m g - Co Athod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU a (1986).
supersaturation – temperature growth a method – Temperat Experimental method decomposition m	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Reduced – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTI 0 0 —Elementary Crystal Growth I 1st Ed., Saan Pull. avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal nnai, (1991). Crystal growth process I, 1st Ed., John Wiley Pub —Modern Crystallography: III – Crystal Growth	for supe on jar me n.Growth ction m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C ad proces Growth ications,	rsatura ethod – h fro ethod mal me ky – beam e beam e VK, (19 Chapm chapm chapm	Ation - Evap m g - Co Athod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU a (1986).
supersaturation – temperature growth a method – Temperature growth a method decomposition me	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Reduced – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTI 0 0 —Elementary Crystal Growth I 1st Ed., Saan Pull. avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal nnai, (1991). Crystal growth process I, 1st Ed., John Wiley Pub —Modern Crystallography: III – Crystal Growth	for supe on jar me n.Growth ction m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C ad proces Growth ications,	rsatura ethod – h fro ethod mal me ky – beam e beam e VK, (19 Chapm chapm chapm	Ation - Evap m g - Co Athod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU a (1986).
supersaturation – temperature growth a method – Temperature growth a method decomposition method decomposition method V EPIT A vapor phase epitatepitaxy – Electro- LECTURE 1. Sangwal. K., 2. Faktor. M. M (1988). 3. Santhana Rage Publications, REFERENCES 1. Ramasamy. P., University, Che 2. Brice, J. C., – G. 3. Chernov. A. A., Solid State, New Market A second state stat	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Reduced – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTI 0 0 —Elementary Crystal Growth I 1st Ed., Saan Pull. avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal nnai, (1991). Crystal growth process I, 1st Ed., John Wiley Pub —Modern Crystallography: III – Crystal Growth	for supe on jar me n.Growth ction m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C ad proces Growth ications,	rsatura ethod – h fro ethod mal me ky – beam e beam e VK, (19 Chapm chapm chapm	Ation - Evap m g - Co Athod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU a (1986).
supersaturation – temperature growth is method – Temperat Experimental method decomposition method decomposition method decomposition method UNIT V EPITA Vapor phase epitat epitaxy – Electro- LECTURE 45 TEXT 1. Sangwal. K., 2. Faktor. M. M. (1988). 3. Santhana Rag Publications, REFERENCES 1. Ramasamy. P., University, Che 2. Brice, J. C., – G 3. Chernov. A. A., Solid State, New	Measurement of supersaturation – Expression solution growth – Slow cooling method – Mans ture gradient method – Electro crystallization ods – Chemical reaction method – Reduced – Solubility reduction method – Growth by h XY xy – Liquid phase epitaxy – Molecular bear epitaxy – Metalorganic vapor phase epitaxy – C TUTORIAL PRACTI 0 0 —Elementary Crystal Growth I 1st Ed., Saan Pull. avan. P. and Ramasamy. P., —Crystal growth at (2000). ISTE Summer School Lecture Notes, —Crystal nnai, (1991). Crystal growth process I, 1st Ed., John Wiley Pub —Modern Crystallography: III – Crystal Growth	for supe on jar me n.Growth ction m vdrothern m epita: hemical CAL Disher, U 1 st Ed., C ad proces Growth ications,	rsatura ethod – h fro ethod mal me ky – beam e beam e VK, (19 Chapm chapm chapm	Ation - Evap m g - Co Athod. Atomi epitaxy TO 294). ann an Ed., K	- Low oration els – omplex 9 c layer 7. TAL IS Id Hall, RU a (1986).

	QNT301C		L	Т	P	C
COURSE CODE COURSE NAME	CARBON NANOTUBE E	LECTRONICS	3	0	0	3
	AND DEVICES		•	Ŭ	Ŭ	-
PREREQUISITES			L	Т	Р	Н
~			3	0	0	3
UNIT I Basics of	of Carbon Nanotubes					9
Carbon materials – A	Allotropes of carbon – Struct	ure of carbon nanotu	bes –	Types	of CN	JTs –
	of CNTs – Band structure of					
•	transport properties of SWN	VTs – Scattering in SV	VNTs -	– Carr	ier mo	bility
in SWNTs.						
UNIT II Synthes	is and Integration of SWN	Γ Devices				9
v	D synthesis – Method –		with	device	fabric	
	synthesis on metal electrode					
-	T growth – Location, Ori		•		-	
6	ality distribution analysis			-	-	
	ic nanotubes in FET devices -		1			
UNIT III Carbon	Nanotube Field-Effect Tra	nsistors				9
Schottky barrier he	ights of metal S/D contac	cts – High k-gate	dielect	ric in	tegrati	on –
5	e – Chemical doping – Hy	0 0			0	
	FETs – SWNT MOSFETs –					,
	ponse and Device Simulatio			0		9
	response of Top gated SW		meas	ureme	nt usi	ing a
_	-Homodyne detection using					-
	ent – AC gain from a SW					
simulation of SWNT	EET CWNT EET cimulat					evice
	FEIS – SWINT FEI SIIIUIA	tion using NEGF – D	evice	-		
the Ballistic limit -	Role of Phonon scattering	-		charac	eteristi	cs at
Optoelectronic pheno	Role of Phonon scattering mena.	– High frequency p	erform	charac	eteristi	cs at
Optoelectronic pheno UNIT V Carbon	Role of Phonon scattering mena. Nanotube Device Modeling	- High frequency p g and Circuit Simulat	erform	charac	cteristic limits	cs at - 9
Optoelectronic phenoUNIT VCarbonSchottky barrier SW	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp	 High frequency p and Circuit Simulat bact model for circuit 	erform ion it sim	charac ance	teristic limits	cs at - 9 Model
Optoelectronic phenoUNITVCarbonSchottkybarrierSWIoftheintrinsicSWI	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full	– High frequency p g and Circuit Simulat pact model for circu SWNT-FET model	erform ion it sim – Ap	charac ance	eteristic limits n – N ons of	cs at - 9 Model f the
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compact	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na 	erform ion it sim – Ap notube	charace ance ulation plication e interes	teristic limits n – N ons of connec	cs at - 9 Model f the cts -
Optoelectronic pheno UNIT V Carbon Schottky barrier SW of the intrinsic SWI SWNT-FET compact Circuit models for SW	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na 	erform ion it sim – Ap notube	charace ance ulation plication e interes	teristic limits n – N ons of connec	cs at - 9 Model f the cts -
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compactCircuit models for SWCarbon nanotube interest	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance mo NTs – Circuit models for Sy connects – Applications.	– High frequency p g and Circuit Simulat pact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu	erform it sim – Ap notube it mod	charace ance ulation plication e interes	teristic limits n – N ons of connec	cs at - 9 Model f the cts - NTs -
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compactCircuit models for SWCarbon nanotube interLECTURE	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for Sy connects – Applications. TUTORIAL	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 	erform it sim – Ap notube it mod	charace ance ulation plication e interes	teristic limits n – M ons of connect MWN TOT	cs at - 9 Model f the cts - VTs - VAL
Optoelectronic pheno UNIT Carbon Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SW Carbon nanotube intervent LECTURE 45	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance mo NTs – Circuit models for Sy connects – Applications.	– High frequency p g and Circuit Simulat pact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu	erform it sim – Ap notube it mod	charace ance ulation plication e interes	teristic limits n – N ons of connec	cs at - 9 Model f the cts - VTs - VAL
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compactCircuit models for SWCarbon nanotube interestLECTURE45TEXT	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance mo NTs – Circuit models for SV connects – Applications. TUTORIAL 0	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon na WNT bundles – Circuit PRACTICA 0 	erform ion it sim – Ap notube it mod	charac ance ulation plication e interview lels for	teristic limits n – M ons of connec MWN TOT 45	cs at - 9 Model f the cts - NTs - YAL 5
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compactCircuit models for SWCarbon nanotube interestLECTURE45TEXT1. Ali Javey and Jin	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 0 	erform ion it sim – Ap notube it mod	charace ance defined plication plication lels for lels for le med	teristic limits n – N ons of connect MWN TOT 45	cs at 9 Aodel f the cts – VTs – VAL 5 09).
Optoelectronic pheno UNIT Carbon Schottky barrier SWR Schottky barrier SWR SwnT-FET compact Circuit models for SW Carbon nanotube intervent Carbon LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance mo NTs – Circuit models for SV connects – Applications. TUTORIAL 0	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 0 	erform ion it sim – Ap notube it mod	charace ance defined plication plication lels for lels for le med	teristic limits n – N ons of connect MWN TOT 45	cs at 9 Aodel f the cts – VTs – VAL 5 09).
Optoelectronic phenoUNIT VCarbonSchottky barrier SWIof the intrinsic SWISWNT-FET compactCircuit models for SWCarbon nanotube interentLECTURE45TEXT1. Ali Javey and Jin2. Michael J. O'CorFrancis, (2006).	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 0 	erform ion it sim – Ap notube it mod	charace ance defined plication plication lels for lels for le med	teristic limits n – N ons of connect MWN TOT 45	cs at 9 Model f the cts – VTs – VAL 5 09).
Optoelectronic pheno UNIT V Carbon Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SWI Carbon nanotube interdistry LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 0 Electronics Springer roperties and Applicat 	erform ion it sim – Ap notube it mod L Scienc ionsl, (charace ance defined plication plication lels for lels for cRC/T	teristic limits n – N ons of connect MWN TOT 45 ia, (200 caylor of	cs at - 9 Model f the cts - VAL 5 09). &
Optoelectronic pheno UNIT Carbon Schottky barrier SWR Schottky barrier SWR of the intrinsic SWR SWNT-FET compact Circuit models for SWR Carbon nanotube intervent Carbon LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES 1. Francois Leonar	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube	 High frequency p and Circuit Simulat bact model for circu SWNT-FET model odeling for carbon na WNT bundles – Circu PRACTICA 0 Electronics Springer roperties and Applicat 	erform ion it sim – Ap notube it mod L Scienc ionsl, (charace ance defined plication plication lels for lels for cRC/T	teristic limits n – N ons of connect MWN TOT 45 ia, (200 caylor of	cs at 9 Aodel f the cts – VAL 5 09). &
Optoelectronic pheno UNIT Carbon Schottky barrier SWI Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SWI Carbon nanotube interd LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES 1. Francois Leonar (2009).	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon national WNT bundles – Circuit PRACTICA 0 Electronics Springer roperties and Applicat n Nanotube Devices	erform it sim – Ap notube it mod L Scienc ionsl, (charac ance defined ulation plication e interview lels for e med CRC/T	teristic limits n – N ons of connec MWN TOT 45 ia, (200 aylor of aylor of ndrew	cs at 9 Aodel f the cts – VAL 5 09). & Inc.,
Optoelectronic pheno UNIT Carbon Schottky barrier SWI Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SWI Carbon nanotube interd LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES 1. Francois Leonar (2009).	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon national WNT bundles – Circuit PRACTICA 0 Electronics Springer roperties and Applicat n Nanotube Devices	erform it sim – Ap notube it mod L Scienc ionsl, (charac ance defined ulation plication e interview lels for e med CRC/T	teristic limits n – N ons of connec MWN TOT 45 ia, (200 aylor of aylor of ndrew	cs at 9 Aodel f the cts – VAL 5 09). & Inc.,
Optoelectronic pheno UNIT V Carbon Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SW Carbon nanotube interd LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES 1. Francois Leonar (2009). 2. R. Saito and M. S	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon national WNT bundles – Circuit PRACTICA 0 Electronics Springer roperties and Applicat n Nanotube Devices	erform it sim – Ap notube it mod L Scienc ionsl, (charac ance defined ulation plication e interview lels for e med CRC/T	teristic limits n – N ons of connec MWN TOT 45 ia, (200 aylor of aylor of ndrew	cs at 9 Aodel f the cts – VAL 5 09). & Inc.,
Optoelectronic pheno UNIT V Carbon Schottky barrier SWI of the intrinsic SWI SWNT-FET compact Circuit models for SW Carbon nanotube interview Carbon nanotube interview LECTURE 45 TEXT 1. Ali Javey and Jin 2. Michael J. O'Cor Francis, (2006). REFERENCES 1. Francois Leonar (2009). 2. R. Saito and M. S Press, (1998).	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon national WNT bundles – Circuit PRACTICA 0 Electronics Springer roperties and Applicat n Nanotube Devices	erform it sim – Ap notube it mod L Scienc ionsl, (charac ance defined ulation plication e interview lels for e med CRC/T	teristic limits n – N ons of connec MWN TOT 45 ia, (200 aylor of aylor of ndrew	cs at - 9 Aodel f the cts - VAL 5 09). & Inc.,
Optoelectronic phenoUNITVCarbonSchottky barrierSWISchottky barrierSWISWNT-FETcompactSWNT-FETcompactCircuit modelsfor SWICarbon nanotube interdCarbonLECTURE45TEXT1. Ali Javey and Jin2. Michael J. O'CorFrancis, (2006).REFERENCES1. Francois Leonar(2009).2. R. Saito and M. SPress, (1998).E REFERENCES	Role of Phonon scattering mena. Nanotube Device Modeling NT-FET modeling – Comp NT channel region – Full model – Performance me NTs – Circuit models for SV connects – Applications. TUTORIAL 0 g Kong, —Carbon Nanotube mell, —Carbon nanotubes: Pr	 High frequency p and Circuit Simulat bact model for circuit SWNT-FET model odeling for carbon national WNT bundles – Circuit PRACTICA 0 Electronics Springer roperties and Applicat n Nanotube Devices	erform it sim – Ap notube it mod L Scienc ionsl, (charac ance defined ulation plication e interview lels for e med CRC/T	teristic limits n – N ons of connec MWN TOT 45 ia, (200 aylor of aylor of ndrew	cs at - 9 Aodel f the cts - VAL 5 09). & Inc.,

COURSE CODE	QNT301D		L	Т	Р	С
COURSE NAME	NANOSCALE INTEGRATED300					
	COMPUTING					
PREREQUISITES			L	T ^	P	H
			3	0	0	3
	oduction to Nanocomputing		<u>,1 ,</u>	• ,		9
	ra – Transistor as a s					
	Nanoscale devices – Moleo	cular devices – Nanotu	bes –	- Quan	itum d	ots –
Wave computing – Q	1 0					
	m Computing			1 0		9
-	ons – Quantum computing	· · ·	•		-	
	ntum compression – Qu	-				
	mputing with quantum dot					
	Ground state computing	– Clocking – QC	A a	ddition	—	QCA
	memory – 4-bit processor					-
	ave Architectures					9
Spin wave crossbar	- Spin wave reconfigurat	ole mesh – Spin wave	e ful	ly inte	erconne	ected
cluster - Multi-scale	Hierarchical architecture	- Spin wave based le	ogic	device	es – I	Logic
functionality - Paral	lel computing with spin wa	aves – Parallel algorith	ım de	sign te	chniqu	ies –
Parallel routing and b	proadcasting – On-Spin w	ave crossbar – OnSpi	in wa	ve rec	onfigu	rable
mesh - On-Spin wave	fully interconnected cluster					
UNIT IV Molecul	ar Computing					9
Switching and memo	ry in molecular bundles –	molecular bundle sw	vitche	s –	Circuit	t and
architectures in mole	cular computing – Mole	cular grafting for	silico	n coi	nputin	g –
Molecular grafting o	n intrinsic silicon nanowire	es – Self assembly of C	CNTs			
UNIT V Comput	tational Tasks In Medical N	anorobotics				9
Medical Nanorobot	designs – Microbivores –	Clottocytes – Chron	nallo	cytes -	- Con	mon
functions requiring or	board computation – Nano	robot control protocols:	: Ope	ration	protoc	ols –
Biocompatibility prot	ocols – Theater protocols –N	Vanoscale image process	sing:	Labeli	ng pro	blem
- Convex Hull proble	m – Nearest neighbor proble	m				
LECTURE	TUTORIAL	PRACTICAI			ТОТ	AL
45	0	0			45	5
TEXT						
1.Nielsen M. A. and I	saac L. Chuang, —Quantum	computation and quantu	um in	format	tion,	
Cambridge Univers	ity ,Press, (2000).					
2.Jain A. K., -Funda	mentals of Digital Image Pro	ocessing, Prentice-Hall,	(198	8)		
REFERENCES						
1. Schroder D. K., —S	Semiconductor Material and	Device Characterization	ı∥, Ne	w Yor	k, (200)6).
	Haven, —Atomic and Molecu					,
	•	·	-	× (/	
E REFERENCES						
E REFERENCES						

COURSE CODE	(QNT401A		L	Т	Р	С
COURSE NAME	N	AICRO / NANO DEVICI	ES AND	3	0	0	3
	S	SENSORS					
PREREQUISITES	5			L	Т	Р	Н
				3	0	0	3
UNIT I Intro	duc	tion					9
MEMS and NEM	ЛS	definitions, Taxonomy	of Nano-and Mic	rosyst	ems-S	ynthe	sis and
Design. Classifica	tion	and considerations, Bio	omimetics, Biologica	al ana	logies	, and	design-
Biomimetics Funda	mer	ntals, Biomimetics for NE	MS and MEMS, Nat	no-ICs	and I	Nanoc	computer
architectures.							
UNIT II Mode	eling	g of Micro And Nano Scal	le Electromechanica	l Syst	ems		9
Introduction to mo	deliı	ng, analysis and simulatio	n, basic electro -ma	gnetic	with	applic	cation to
MEMS and NEM	S , 1	modeling developments	of micro-and	nano	acti	uators	using
electromagnetic-Lu	mpe	d-parameter mathematic	al models of MEM	IS, en	ergy	conve	rsion in
NEMS and MEMS					·		
UNIT III Inorg	anio	c and Organic Enabled Se	ensors				9
Introduction-types	of s	sensors-Mechanical, optica	al, spintronic, bioel	ectron	ic and	l bior	nagnetic
		ation-surface materials and					U
		haracteristics and Physic					9
		, static Characteristics and		stics	Physic	al eff	ecte · _
				bures,	1 11 9 510		ccis -
			Effect, Electrol				ffect ,
Photoelectric Eff	ect,	Photoluminescence H	Effect, Electrol	umine	scence	e E	ffect ,
Photoelectric Eff	ect,		Effect, Electrol	umine	scence	e E	ffect ,
Photoelectric Eff Chemiluminescence phenomena	ect, e Ef	Photoluminescence H	Effect, Electrol	umine	scence	e E	ffect ,
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur	ect, Ef	Photoluminescence E ffect, Doppler Effect, Hal	Effect, Electrol Il Effect, thermoelect	umine ric eff	scence ect, m	e E agneto	ffect , o-optical
PhotoelectricEffChemiluminescencephenomenaUNITVFutureNanomachines,	ect, Ef <u>e N</u> ano	Photoluminescence E ffect, Doppler Effect, Hal anosystems	Effect, Electrol Il Effect, thermoelect	umine ric eff	scence ect, m ectron	e E agneto	ffect , o-optical 9 Quantum
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur	ect, Ef <u>e N</u> ano re (Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with	umine ric eff lar El h the	scence ect, m ectron e Br	e E agneto ics. (ain,	ffect , o-optical 9 Quantum towards
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur	e Ef e Ef e N ano re (e,]	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with	umine ric eff lar El h the	scence ect, m ectron e Br	e E agneto ics. (ain,	ffect , o-optical 9 Quantum towards
PhotoelectricEffChemiluminescencephenomenaUNITVFuturNanomachines,Computation:Futurmolecularmedicin	e Ef e Ef e N ano re (e,]	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with	umine ric eff lar El h the enges	scence ect, m ectron e Br	e E agneto ics. (ain, ne solu	ffect , o-optical 9 Quantum towards
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing	e Ef e Ef e N ano re (e,]	Photoluminescence E ffect, Doppler Effect, Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe	umine ric eff lar El h the enges	scence ect, m ectron e Br	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE	e Ef e Ef e N ano re (e,]	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA	umine ric eff lar El h the enges	scence ect, m ectron e Br	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT	re N ano g tecc	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0	umine ric eff lar El h the enges	scence ect, m ectron e Br and th	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL 45
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward	re N ano re (g tecc	Photoluminescence E ffect, Doppler Effect, Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided hnology TUTORIAL 0	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro	umine ric eff lar El h the enges	scence fect, m ectron e Br and th tro M	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL 45
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward	re N ano re c g tecc g tecc Ly ro M	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided hnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro	umine ric eff lar El h the enges	scence fect, m ectron e Br and th tro M	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press,	ect, Ef re N ano re (c e, 1 g tec Ly ro M (200	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided hnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I	umine ric eff lar El h the enges L D-Elec Micro-	scence ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL 45 ical $g - 2^{nd}$
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE LECTURE 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a	ect, e Ef ano re (e,] g tecc g tecc Ly vo M (200 nd	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided thnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05).	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper	umine ric eff lar El h the enges L D-Elec Micro- rties a	scence ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO	ffect , o-optical 9 Quantum towards utions in 0TAL 45 ical $g - 2^{nd}$
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a Institute of Physical	ect, Ef re N ano re (ce,]] g tec g tec Ly ro M (200 nd	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided hnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05). Cammarata, Nanomaterial	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper itute of Physics, (200	umine ric eff lar El h the enges AL	scence fect, m ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO fechan heering	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical $g - 2^{nd}$ tions
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a Institute of Physical	ect, Ef re N ano re (ce,]] g tec g tec Ly ro M (200 nd	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05). Cammarata, Nanomaterial c,Bristol, Philadelphia: Insti-	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper itute of Physics, (200	umine ric eff lar El h the enges AL	scence fect, m ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO fechan heering	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical $g - 2^{nd}$ tions
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a Institute of Phy 3. N. P. Mahalik, I	ect, Ef re N ano re (ce,]] g tec g tec Ly ro M (200 nd	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05). Cammarata, Nanomaterial c,Bristol, Philadelphia: Insti-	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper itute of Physics, (200	umine ric eff lar El h the enges AL	scence fect, m ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO fechan heering	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical $g - 2^{nd}$ tions
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a Institute of Phy 3. N. P. Mahalik, I York (2006). REFERENCES	ect, Ef re N ano re (c e,] g tec g tec Ly ro M (200 nd vsics Micr	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05). Cammarata, Nanomaterial c,Bristol, Philadelphia: Insti-	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper itute of Physics, (200 otechnology, Springer	umine ric eff lar El h the enges AL	scence fect, m ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO fechan heering	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical $g - 2^{nd}$ tions
Photoelectric Eff Chemiluminescence phenomena UNIT V Futur Nano machines, m Computation: Futur molecular medicin NanoManufacturing LECTURE 45 TEXT 1. Sergey Edward and Nano-Electric Ed.,CRC Press, 2. A.S.Edelstein a Institute of Phy 3. N. P. Mahalik, I York (20 \cup 6). REFERENCES 1. Mark J. Jackson,	ect, Ef re N ano re (c e,]] g tec g tec Ly co M (200 nd (200 nd Vsics Micr Mic	Photoluminescence E ffect, Doppler Effect , Hal anosystems robots, electronics based of Meso/Nanoelectronics? Lab-on-BioChips- Guided chnology TUTORIAL 0 shevski, Lyshevski Edwa lechanical Systems, Fundar 05). Cammarata, Nanomaterial ,Bristol, Philadelphia: Insti- ro manufacturing and Nano	Effect, Electrol Il Effect, thermoelect d on CNT, molecul -Interfacing with d evolution for challe PRACTICA 0 rd Lyshevski, Micro mental of Nano-and I ls: Synthesis, Proper itute of Physics, (200 otechnology, Springer	umine ric eff lar El h the enges AL D-Elec Micro- rties a (2). t Berli	scence fect, m ectron e Br and th tro M Engin	e E agneto ics. (ain, ne solu TO fechan heering	ffect , o-optical 9 Quantum towards utions in 0TAL 45 iical $g - 2^{nd}$ tions

- 3. Kalantar–Zadeh K, Nanotechnology Enabled Sensors, Springer, (2008).
- 4. Serge Luryi, Jimmy Xu, Alex Zaslavsky, Future trends in MicroElectronics, John Wiley & Sons, Inc. Hoboken, New Jersey (2007).

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE CODE	QNT401B		L	Т	Р	С
COURSE NAME	SPECTROSCOPIC TECH	INIQUES FOR	3	0	0	3
	NANOMATERIALS					
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Nano C	ptics					9
Basic Concepts-Spo	ontaneous Emission- Class	sical Bound- Rad	iating	Elec	ctron-(Quantum
Mechanical Radiativ	ve Decay-Absorption and	Emission - Abs	orptio	n Co	efficie	ent and
Absorption Cross-	Section, Absorption and	Induced Emission	n-Nan	o-opti	cs ar	nd local
spectroscopy -Scann	ing plasmon near-field opt	tical spectroscopy (SPNN	I)-nea	r-field	l optical
spectroscopy- nearfie	ld nonlinear optics					
UNIT II Molecu	lar Spectroscopies Of Nano	oassemblies				9
Simplified model fo	r vibrational interactions-C	haracteristic bands	for or	ganic	comp	ounds -
Attenuated-total refle	ection (ATR) and grazin	ng incidence angl	le te	chniqu	les-Re	flection-
absorption IR spectr	roscopy (RAIRS)-The Ran	nan Effect- Lateral a	and in-	-depth	Reso	lution of
Conventional µRS- I	Resonant Raman Spectrosco	py (RRS) - Nanosp	pecific	Mo	des-	Surface-
Enhanced Raman S	Spectroscopy (SERS)- Nat	no-Raman- Phase	Identi	ficatio	n and	d Phase
Transitions in Nanopa	articles- Characterizing Carbo	on Materials with Ra	man S	spectro	oscopy	7
UNIT III Nonline	ear Spectroscopies					9
Absorption saturatio	n and harmonic generation	on,Second-harmonic	gene	eration	(SH	IG) and
sum frequency spect	roscopy (SFG)- Luminescen	ce up conversion-Th	ne use	of no	nlinea	r optical
methods to obtain infi	rared spectra of ultra-thin ass	emblies confined to	surfac	es		
UNIT IV Lumine	escence Spectroscopies					9
Optical properties of	f assembled nanostructures-	interaction between	nano	partic	les-Di	rect and
indirect gap transitio	ons-, -Single molecule and	single nanoparticle	es sp	ectros	copy-l	Dynamic
light scattering s	pectroscopy Fluorimetry an	nd chemiluminescen	nce -	X-ray	/ fluo	rescence
spectrometry- Atomic	emission spectroscopy.					
UNIT V Electro	n Spectroscopies for Nanor	naterials				9
X-Ray Beam Effe	cts,Spectral Analysis -Con	re Level Splitting	Line	ewidth	ıs- E	lemental
-	and Quantitative -Seconda	-	-	-	-	
- Basic Principles	of AES-Instrumentation H	Experimental Proce	dures	Inclu	ıding	Sample
Preparation - AES I	Modifications and Combina	tions with other Te	chniqu	ies -A	Auger	Spectra:
Direct and Derivat	ive Forms and Applicati	ons-Electron energ	y los	s spe	ectros	copy of
nanomaterial						
LECTURE	TUTORIAL	PRACTICA	L			DTAL
45	0	0				45
TEXT						
	and Horst-Günter Rubahn; -	-Optics and Spectro	scopy	at Su	rfaces	and
	Viley and Sons, Inc., (2005).					
	n, Modern Optical Spectrosco					
3. Collin Banwell, M	c Cash, Fundamentals of Mo	lecular Spectroscopy	y, McC	Graw I	Hill (1	994).

4. Harvey Elliot White, Introduction to Atomic Spectra, McGraw Hill, (1934).

REFERENCES

1. Francis Rouessac and Annick Rouessac, Chemical Analysis-Modern Instrumentation Methods and Techniques,(2000)

- 2. Joseph. R. Lakowicz Principles of fluorescence spectroscopy, Springer, (2010).
- 3. Pavia, Lampman, Kriz, Vyvyan, Introduction to spectroscopy, Cengage learning, (2009).
- 4. Jin Jhong Jhang, Optical properties and spectroscopies of Nanomaterials, World Scientific Publishing (2009).

E REFERENCES

1. www.nptel.ac.in

2. <u>www.mit.co.in</u>

COURSE CODE	QNT401C		L	Т	Р	С
COURSE NAME	THIN FILM SCIENCE A	ND	3	0	0	3
	TECHNOLOGY					
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Thin Fil	m Deposition Techniques					9
Introduction - Kinet	ic theory of gases - Physi	cal vapour deposition	tech	niques	– Ph	ysics
and Chemistry of Ev	aporation - Thermal evapor	ation – Pulsed laser of	leposi	tion –	Mole	cular
beam epitaxy – Sput	tering deposition –DC, RF, I	Magnetron, Ion beam a	nd rea	active s	sputter	ing -
Chemical methods -	Thermal CVD – Plasma e	nhanced CVD – Spra	y Pyr	olysis	– Sol	l Gel
method - Spin and	Dip coating – Electro pl	ating and Electroles	ss pla	ting -	-Depos	sition
mechanisms.						
UNIT II Charact	terization Techniques					9
Surface analysis tech	nniques – Auger Electron	spectroscopy - Phote	oelect	ron S	pectros	scopy
-	lass Spectroscopy – X-ray			-	-	
Backscattering spectr	oscopy - Imaging Analysis	Techniques – Scanni	ng Ele	ctron	Micros	scopy
- Transmission Elect	ron Microscopy – Optical	analysis Techniques -	–Ellip	sometr	y – Fo	ourier
Transform Infrared Sp	ectroscopy – Photoluminesc	ence Spectroscopy				
	tion And Diffusion In Thin					9
Physisorption – Che	misorption – Work function	on changes induced	by a	dsorba	tes –	Two
• •	ransititions in adsorbate lay		•			
	ntals of diffusion –Grain H					
-	sion -Electromigration in the	-				
_	n Thin Films					9
Origin of Thin film s	tress - Classifications of s	tress – Stress in epi	taxial	films	– Gr	owth
-	ine films – Correlation be					
	ss evolution – film stress		-			
	measurement - Scanning las					
UNIT V Modific	ation of Surfaces And Film	S				9
Introduction - Laser	and their Interactions with	Surfaces – Laser m	odific	ation	effects	and
applications – Laser	sources and Laser scann	ing methods - Theri	mal a	nalysi	s of 1	Laser
annealing - Laser s	urface alloying - Ion impla	ntation effects in sol	ids –	Energ	gy los	s and
	on – compositional modif					
and applications						
LECTURE	TUTORIAL	PRACTICA	L		TOT	AL
45	0	0			45	;
TEXT	-	•				
1. Amy E. Wend	lt, Thin Films - High densi	ty Plasmas, Volume 2	27, Sp	ringer	Publis	shers.
(2006).			_			
2. Rointan F. Bu	nshah, Hand Book of Depos	ition technologies for	Thin F	Films a	nd coa	ıtings
by Science, Te	chnology and Applications,	Second Edition, Noyes	s Publ	ication	ns, (199) 3).

3. Milton Ohring, Materials Science of Thin films Published by Academic Press Limited(1991)

REFERENCES

1. L.B. Freund and S.Suresh, Thin Film Materials, (2003). L.B. Freund and S.Suresh, Thin Film Materials, (2003).

2. Hans Luth, Solid surfaces, Interfaces and Thin Films' 4th edition, Springer Publishers (2010).

3. Harald Ibach, Physics of Surfaces and Interfaces, Springer Publishers (2006).AM

E REFERENCES

www.nptel.ac.in

www.mit.co.in

COURSE NAMEMICRO AND NANO EMULSIONS300PREREQUISITESLTP300UNIT IIntroductionDefinition of nano- and micro- emulsions – Reason for their long term kinetic stabPractical application in personal care products and cosmetics, healthcare prpharmaceuticals and agrochemicals – Schematic representation of oil/water and wemulsions – Comparison with micelles and macroemulsions – Methods of emulsification	3 H 3 9 ility – oducts,
3 0 0UNIT IIntroductionDefinition of nano- and micro- emulsions – Reason for their long term kinetic stabPractical application in personal care products and cosmetics, healthcare prpharmaceuticals and agrochemicals – Schematic representation of oil/water and w	3 9 ility –
UNIT I Introduction Definition of nano- and micro- emulsions – Reason for their long term kinetic stab Practical application in personal care products and cosmetics, healthcare pr pharmaceuticals and agrochemicals – Schematic representation of oil/water and w	9 ility –
Definition of nano- and micro- emulsions – Reason for their long term kinetic stab Practical application in personal care products and cosmetics, healthcare pr pharmaceuticals and agrochemicals – Schematic representation of oil/water and w	ility –
Practical application in personal care products and cosmetics, healthcare propharmaceuticals and agrochemicals – Schematic representation of oil/water and w	
pharmaceuticals and agrochemicals – Schematic representation of oil/water and w	aducte
	Juucis,
emulsions - Comparison with micelles and macroemulsions - Methods of emulsifi	ater/oil
1	cation:
Pipe flow, static mixers and general stirrers, high-speed mixers, colloid mills an	d high
pressure homogenizers – continuous and batch-wise preparations – turbulent flow.	
UNIT II Mechanism of Emulsification	9
Role of interfacial energy - Explanation of the high energy required for format	
nanoemulsions - The Laplace pressure concept - Role of surfactants: Reduct	
interfacial tension and the effect on dro plet size - Gibbs adsorption equation - Int	
dilational modulus and droplet deformation – Interfacial tension gradients and the Man	U
effect - Solubilization theories: Concept of a duplex film and bending of the interface t	
o/w or w/o emulsions – Phase diagrams of ternary systems of water, surfactant and cosur	
- Concept of normal and inverse micelles - Quarternary phase diagrams of of	l/water
surfactant and cosurfactant – Solubilization of oil by nonionic surfactant	
UNIT III Formulation of Emulsion	9
High pressure homogenization and efficiency of preparation – The Phase In	
Temperature (PIT) principle –Variation of interfacial tension with temperature –	
diagrams as a function of temperature – Formulation of microemulsions – Selec	
microemulsions: Hydrophilic Lipophilic Balance (HLB) concept – Phase In	
Temperature (PIT) concept – Cohesive Energy Ratio (CER) concept	
UNIT IV Characterization of Emulsions	9
Scattering techniques: Time average light scattering - Neutron scattering - Quasi-elast	ic light
scattering (Photon Correlation Spectroscopy(PCS)) - Conductivity and NMR tech	niques:
Conductivity of water/oil microemulsions, percolating and non-percolating emu	ılsions,
bicontinuous emulsions - Viscosity of emulsions - NMR technique for measurement	of self
diffusion of all components in emulsions and explanation of the various structures	
UNIT V Stability of Emulsion	9
Steric stabilization: Unfavourable mixing of the stabilizing chains - Entropic repul	sion –
Total energy - Distance curves for sterically stabilized emulsions - Variation of the	energy
curve with the ratio of adsorbed layer thickness to droplet radius - Thermod	
stabilization: Reason for combining surfactant and cosurfactant to produce an ult	
interfacial tension - Formation of a model w/o emulsion using 4 steps - Relation	ship of
droplet size to interfacial tension	

LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. Seid Mahdi Jafari, –	-Encapsulation of nano-em	ulsions by spray drying , Lamb	ert Academic
Publishing, (2009).			
2. Hans Lautenshlager	–EmulsionsI, Kosmetik II	nternational, (2002)	
REFERENCES			
1. Roque Hidalgo-Alva	arez, —Structure and Funct	ional properties of ColloidsI, C	RC Press,
(2009).			
2. Richard J. Fann, —	Chemistry and Technology	of SurfactantsI, Wiley-Blackwe	ell, (2006).
E REFERENCES			
www.nptel.ac.in			
www.mit.co.in			

COURSE CODE	QNT501A		L	Т	Р	С
COURSE NAME	NANOTECHNOLOGY BU	JSINESS	3	0	0	3
	APPLICATIONS AND					
	COMMERCIALIZATION					
PREREQUISITES			L	Т	Р	Н
			3	0	0	3
UNIT I Overvie	ew					9
• •	of nanobusinesses – ease ardization, investors and com notechnology	•		•		
UNIT II Market	Landscape					9
understand and segn users and application	adscape and commercially ment the nanotechnology ma ons - Global market for na se effectively with partners ations	rketplace – Potential notechnology products	nanot – A	echnol ttractin	ogy Ig vei	nture
	erce and Regulation					9
	eveloping nanotechnology	marketplace _Incentiv	es f	or Co	mme	rcial
 Environment, heal Developments that compared to the second s	of nanotechnology – Critic th and safety within the nar- uld influence the nanotechnol ss Structures	notechnology industry-				
Relationship b/w tecl	nnology development and nev	w business creation- the	e con	npany	conce	epts-
new technology-new	opportunity- sole propriet	orships- general and	limite	ed part	nersł	nips–
professional and close	ed corporations					
UNIT V Materia	als Processing Economics					9
calculate and estimate alternate approache	ection of yield– manufacturi e costs – relative performan es– Identification of equi ds– Tools to estimate the ec	ce enhancements for r pment– facilities and	nater overh	ials pr eads -	ocess - spe	ing– cific
overall system costs -						
-		PRACTICAL		,	ГОТ	
overall system costs -	- its benefits	PRACTICAL 0		,		AL
overall system costs - LECTURE	- its benefits TUTORIAL			,	ГОТ	AL
overall system costs - LECTURE 45 TEXT 1. Sherron Sparks, N Press, Taylor & F	- its benefits TUTORIAL	0 pplications and Comme		zation,	FOT. 45 CR	AL

(TERI), India (2009).
2.Nanotechnology: a Realistic Market Assessment, Report Code: NAN031B, BCC
Research, Market
Forecasting (2006).
3. Michael T. Burke, Nanotechnology: The Business, Perspectives in Nanotechnology, CRC
Press, Colorado, USA (2008). **E REFERENCES**www.nptel.ac.in
www.mit.co.in

COURSE CODE	QNT501B	L	Т	Р	С
COURSE NAME	NANO – CMOS CIRCUITS AND	3	0	0	3
	PHYSICAL DESIGNS				
PREREQUISITES		L	Т	Р	Η
		3	0	0	3
UNIT I Nano-C	Cmos Scaling Problems And Implications				9
Design Methodolog	y in the Nano-CMOS Era – Scaling – Ove	erview	of S	ub-10	0-nm
Scaling Challenges	and Subwavelength Optical Lithography - Back-	End-of	-Line	Challe	enges
(Metallization) –	Front-End-of-Line Challenges (Transistors) –	Proce	ss Co	ontrol	and
Reliability Lithogra	phic Issues and Mask Data Explosion – Ne	ew Bre	ed of	Circuit	and
Physical Design – Me	odeling Challenges – Need for Design Methodology	/ Chang	ges		
UNIT II Practic	alities of Subwavelength Optical Lithography				9
Simple Imaging Theo	ory – Challenges for the 100-nm Node – e-Factor	or for t	the 100)-nm l	Node
- Corner Rounding	Radius - Resolution Enhancement Techniques:	Specia	lized I	llumin	ation
Patterns - Optical P	roximity Corrections –Subresolution Assist Feature	es – A	Alterna	ting Pl	hase-
Shift Masks – Phy	sical Design Style Impact on RET and OPC Con	nplexit	у —	Specia	lized
Illumination Condition	ons – Two-Dimensional Layouts – Alternating Ph	nase-Sł	nift Ma	sks –l	Mask
Costs					
UNIT III Process	s Scaling Impact on Design Mixed-Signal Circuit	Desig	n		9
Design Consideration	ns – Device Modeling – Passive Components –	Desig	n Metl	nodolo	gy –
Benchmark Circuits	-Design Using Thin Oxide Devices - Desig	n Usi	ng Tł	nick C	Dxide
Devices - Low-Vol	tage Techniques – Current Mirrors – Input Stag	ges –	Outpu	t Stag	jes –
Bandgap References	– Design Procedures – Electrostatic Discharge	Protec	ction -	- Mult	tiple-
Supply Concerns -	Noise Isolation - Guard Ring Structures - Isol	ated N	MOS	Devic	es –
Epitaxial Material ve	rsus Bulk Silicon – Decoupling – Power Busing	– Inte	egratio	n Prob	lems
- Corner Regions -	Neighboring Circuitry				
UNIT IV Electro	static Discharge Protection Design				9
ESD Standards and	Models - ESD Protection Design - ESD Protection	ection	Schen	ne – 7	Furn-
on Uniformity of H	ESD Protection Devices - ESD Implantation ar	nd Sili	cide 1	Blockii	ng –
ESD Protection Gu	idelines - Low-C ESD Protection Design for H	ligh-Sp	peed I	/0 –	ESD
Protection for High	-Speed I/O or Analog Pins – Low-C ESD Pro	tection	Desig	gn – 1	Input
Capacitance Calcula	tions - ESD Robustness - Turn-on Verificat	ion –	ESD	Prote	ction
Design for Mixed-V	oltage I/O – Mixed-Voltage I/O Interfaces – ES	D Cor	ncerns	for M	ixed-
Voltage I/O Interfac	es -ESD Protection Device for a Mixed-Voltag	e I/O	Interfa	ace –	ESD
Protection Circuit De	esign for a Mixed-VoltageI/O Interface – ESD	Robust	tness	– Tui	m-on
Verification - SCF	R Devices for ESD Protection - Turn-on Mecha	nism o	of SCR	Devic	ces –
	for CMOS On-Chip ESD Protection				
SCR-Based Devices	for CMOS On-Chip ESD Protection Integrity Problems in On-Chip Interconnects				9
SCR-Based Devices : UNIT V Signal	-	Circuit	Repre	sentatio	
SCR-Based DevicesUNITVSignalInterconnectFigures	Integrity Problems in On-Chip Interconnects		-		on of
SCR-Based DevicesUNITVSignalInterconnectFiguresInterconnects–	Integrity Problems in On-Chip Interconnects of Merit – Interconnect Parasitics Extraction – C	Integ	grity .	Analys	on of is –

Techniques – Circuit Te	echniques		
LECTURE	TUTORIAL	PRACTICAL	TOTAL
45	0	0	45
TEXT			
1. Ban P. Wong	, Anurag Mittal, Yu C	aoGreg Starr, "Nano-CMOS	Circuit and
physical design	", John Wiley & Sons, Inc	e.Hoboken, New Jersey. (2000)	
REFERENCES			
1. Charles chiang,	Jamil Kawa, "Design for ma	anufacturability and yield for N	ano - Scale
CMOS", Spring	er, (2007).		
E REFERENCES			
1. <u>www.nptel.ac.ir</u>	1		
2. <u>www.mit.co.in</u>			

COURSE	CODE	QNT501C				L	Т	P	С
COURSE 1	NAME	NANOMA	NIPULATION	N & ASSEMBL	Y	3	0	0	3
PREREQU	JISITES					L	Т	Р	Η
						3	0	0	3
UNIT I	Introdu	ction						•	9
Concept of	manipulat	tion in nanos	structures & nan	oassembly, expe	erimental re	ealiza	tion,	limi	tation
of present-c	lay instrur	nentation, fu	ture out look						
UNIT II	Nanoma	nipulation							9
-	-	-		Instrumentation	-		no m	anip	ulator
& combine	d microsco	opy tools; na	ano manipulatio	n for mechanical	l properties				
UNIT III	Nano Pa	article Man	ipulation by El	ectrostatic Forc	es				9
Theoretical	aspects of	f AC electro	kinetics; applic	ations of dielect	rophoresis	on th	e nar	osca	ale;
limitations	of nanosca	ale dielectro	phoresis						
UNIT IV	Biologic	ally Mediat	ed Assembly of	f Artificial Nan	ostructure	S			9
Bio-inspire	d self-asse	embly; the fo	orces & interacti	ions of self-asser	nbly; biolo	gical	linke	ers; s	state-
of- the-art i	n bio-insp	ired self-ass	embly; future d	irections					
UNIT V	Nanostr	uctural Arc	chitectures from	n Molecular Bu	ilding Blo	cks			9
D 1' 0	. •								
Bonding &	connectiv	ity; molecul	ar building bloc	k approaches					
Bonding &	connectiv	ity; molecul		k approaches	PRACTI	CAL	,	TO	ГAL
Bonding &	connectiv	ity; molecul	ar building bloc		PRACTI 0	CAL			FAL 5
	connectiv	ity; molecul	ar building bloc LECTURE	TUTORIAL		CAL			
TEXT			ar building bloc LECTURE 45	TUTORIAL	0				
TEXT	chemical N		ar building bloc LECTURE 45	TUTORIAL 0	0				
TEXT 1. Electroo Publica	chemical N tions.	Vanotechnol	ar building bloc LECTURE 45 ogy by W.J. Lo	TUTORIAL 0	0 h, IUPAC,	Wile	ey e	4	5
TEXT 1. Electroo Publica	chemical N tions. ok of Mic	Vanotechnol	ar building bloc LECTURE 45 ogy by W.J. Lo	TUTORIAL 0 renz and W.Pleit	0 h, IUPAC,	Wile	ey e	4	5
TEXT 1. Electroo Publica 2. Handbo publish REFEREN	chemical N tions. ok of Mic - 2005. I CES	Vanotechnol roscopy for	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho	0 h, IUPAC, ng Lin Wa	Wile	ey luwe	4 r aca	5
TEXT 1. Electroo Publica 2. Handbo publish REFEREN	chemical N tions. ok of Mic - 2005. I CES	Vanotechnol roscopy for	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology	TUTORIAL 0 renz and W.Pleit	0 h, IUPAC, ng Lin Wa	Wile	ey luwe	4 r aca	5
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1. "Handboo Academi	chemical N tions. ok of Mic - 2005. I CES ok of Nanc c Press, 20	Vanotechnol roscopy for ostructured 1 000.	ar building bloc LECTURE 45 ogy by W.J. Lor nanotechnology Materials & Nar	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology,"	0 h, IUPAC, ng Lin War Hari Singh	Wile ng. K 1 Nalv	ey luwe wa (E	4 r aca	5 ademi
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning	chemical N tions. ok of Mic - 2005. I CES ok of Nand c Press, 20 g Probe M	Vanotechnol roscopy for ostructured 1 000. icroscopy &	ar building bloc LECTURE 45 ogy by W.J. Lor nanotechnology Materials & Nar	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho	0 h, IUPAC, ng Lin War Hari Singh	Wile ng. K 1 Nalv	ey luwe wa (E	4 r aca	5 ademi
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne	chemical N tions. ok of Mic - 2005. ICES ok of Nano c Press, 20 g Probe M ll, Wiley-'	Vanotechnol roscopy for ostructured 1 000. ficroscopy & VCH, 2001.	ar building bloc LECTURE 45 ogy by W.J. Lor nanotechnology Materials & Nar c Spectroscopy:	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology," Theory, Technic	0 h, IUPAC, ng Lin War Hari Singh Jues & App	Wile ng. K I Nalv	y luwe wa (E	4 r aca	5 ademi
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N	chemical N tions. ok of Mic - 2005. ICES ok of Nand c Press, 20 g Probe M Il, Wiley-Y anotechno	Vanotechnol roscopy for ostructured l 000. icroscopy & VCH, 2001. ology and its	ar building bloc LECTURE 45 ogy by W.J. Lor nanotechnology Materials & Nar c Spectroscopy: Applications,"	TUTORIAL 0 renz and W.Pleit / by Nanyo, Zho notechnology," Theory, Technic B. Bhushan, Klu	0 h, IUPAC, ng Lin War Hari Singh Jues & App	Wile ng. K Nalv olicat	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H	chemical N tions. ok of Mic - 2005. ICES ok of Nanc c Press, 20 g Probe M Il, Wiley- anotechno ands & M	Vanotechnol roscopy for ostructured l 000. icroscopy & VCH, 2001. ology and its	ar building bloc LECTURE 45 ogy by W.J. Lor nanotechnology Materials & Nar c Spectroscopy: Applications,"	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology," Theory, Technic	0 h, IUPAC, ng Lin War Hari Singh Jues & App	Wile ng. K Nalv olicat	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H MIT Pre	chemical N tions. ok of Mic - 2005. ICES ok of Nano c Press, 20 g Probe M Il, Wiley-' anotechno ands & M	Vanotechnol roscopy for ostructured l 000. ficroscopy & VCH, 2001. ology and its echanics of	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology Materials & Nar c Spectroscopy: Applications," Manipulation,"	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology," Theory, Technic B. Bhushan, Klu Matthew T. Mas	0 h, IUPAC, ng Lin War Hari Singh Jues & App Iwer Publis Son & J. Ke	Wile ng. K Nalv olicat shers.	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H MIT Pre 5. Micro &	chemical N tions. ok of Mic - 2005. ICES ok of Nand c Press, 20 g Probe M Il, Wiley-V anotechno ands & M ess, 1985. Nano man	Vanotechnol roscopy for ostructured l 000. ficroscopy & VCH, 2001. ology and its echanics of	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology Materials & Nar c Spectroscopy: Applications," Manipulation,"	TUTORIAL 0 renz and W.Pleit / by Nanyo, Zho notechnology," Theory, Technic B. Bhushan, Klu	0 h, IUPAC, ng Lin War Hari Singh Jues & App Iwer Publis Son & J. Ke	Wile ng. K Nalv olicat shers.	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn
TEXT 1. Electrod Publica 2. Handbo publish REFEREN 1."Handbod Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H MIT Pre 5. Micro & E REFERI	chemical N tions. ok of Mic - 2005. ICES ok of Nano c Press, 20 g Probe M II, Wiley-V anotechno ands & M ess, 1985. Nano mar ENCES	Vanotechnol roscopy for ostructured l 000. ficroscopy & VCH, 2001. ology and its echanics of	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology Materials & Nar c Spectroscopy: Applications," Manipulation,"	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology," Theory, Technic B. Bhushan, Klu Matthew T. Mas	0 h, IUPAC, ng Lin War Hari Singh Jues & App Iwer Publis Son & J. Ke	Wile ng. K Nalv olicat shers.	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn
TEXT 1. Electroo Publica 2. Handbo publish REFEREN 1."Handboo Academi 2."Scanning A Bonne 3."Micro/N 4. Robot H MIT Pre 5. Micro &	chemical N tions. ok of Mic - 2005. ICES ok of Nanc c Press, 20 g Probe M II, Wiley-V anotechno ands & M ess, 1985. Nano man ENCES otel.ac.in	Vanotechnol roscopy for ostructured l 000. ficroscopy & VCH, 2001. ology and its echanics of	ar building bloc LECTURE 45 ogy by W.J. Los nanotechnology Materials & Nar c Spectroscopy: Applications," Manipulation,"	TUTORIAL 0 renz and W.Pleit v by Nanyo, Zho notechnology," Theory, Technic B. Bhushan, Klu Matthew T. Mas	0 h, IUPAC, ng Lin War Hari Singh Jues & App Iwer Publis Son & J. Ke	Wile ng. K Nalv olicat shers.	y luwe wa (E	4 r aca cd.), ' Da	5 ademi wn